
Introduction to Automated Negotiation

Dave de Jonge

IIIA-CSIC, Barcelona, Spain

October 26, 2025
v0.3

2

© 2025 Dave de Jonge.
This work is licensed under CC BY-NC-ND 4.0. To view a copy of this
license, visit https://creativecommons.org/licenses/by-nc-nd/4.0/

https://creativecommons.org/licenses/by-nc-nd/4.0/

Contents

1 Introduction 15

1.1 Characteristics of Negotiation 15

1.2 History of Automated Negotiation 17

2 Basic Negotiations 21

2.1 Informal Description . 21

2.2 Formal Model . 23

2.2.1 The Offer Space . 23

2.2.2 The Alternating Offers Protocol 25

2.2.3 Utility Functions . 31

2.2.4 Reservation Values . 35

2.2.5 Discount Factors . 37

2.2.6 Knowledge . 38

2.2.7 Negotiation Domains 39

2.3 Pareto Optimality and Individual Rationality 42

2.4 Competitiveness . 45

2.5 Simulation Framework . 48

3 Negotiation Strategies 51

3.1 The BOA Model . 52

3.2 Bidding Strategies . 54

3.2.1 Time-Based Strategies 55

3.2.2 Adaptive Strategies 63

3.2.3 Imitative Strategies 65

3.3 Acceptance Strategies . 76

3.4 Reproposing . 82

4 Opponent Modeling 87

4.1 Learning the Opponent’s Utility Function 87

3

4 CONTENTS

4.1.1 Bayesian Learning . 88
4.1.2 Scalable Bayesian Learning 97
4.1.3 Frequency Analysis . 100

4.2 Learning the Opponent’s Strategy 103
4.2.1 Gaussian Processes . 103
4.2.2 Choosing the Optimal Target Value for an Adaptive

Negotiation Strategy 107
4.3 Learning the Opponent’s Strategy from Previous Negotiation

Sessions . 108

5 Game Theory 109
5.1 Cooperative vs. Non-Cooperative Game Theory 109
5.2 Normal-Form Games . 112

5.2.1 Zero-sum Games . 113
5.2.2 Simultaneous Moves 114
5.2.3 Pure Nash Equilibria 114
5.2.4 The Prisoner’s Dilemma 117
5.2.5 Multiple Pure Nash Equilibria 119
5.2.6 Mixed Nash Equilibria 120

5.3 The Equilibrium Selection Problem 122
5.3.1 Wrong Solutions to the Equilibrium Selection Problem 123
5.3.2 Pareto-Optimality among Nash Equilibria 124
5.3.3 Symmetric Games and Symmetric Equilibria 125

5.4 Turn-taking Games . 128
5.4.1 Tuples . 129
5.4.2 Tree Diagrams . 130
5.4.3 Definition of a Turn-taking Game 131
5.4.4 Game Trees . 133
5.4.5 Strategies . 134
5.4.6 Non-credible Threats 136
5.4.7 Subgame Perfect Equilibria 139
5.4.8 Non-deterministic Turn-taking Games 140

5.5 Turn-taking Games with Imperfect Information 142
5.6 Automated Negotiation as a Game 144

5.6.1 Actions . 145
5.6.2 The Active Player Map 145
5.6.3 The Set of Legal Histories 146
5.6.4 The Observation Functions 147
5.6.5 The Individual Active-Player functions 148
5.6.6 The Utility Functions 148

CONTENTS 5

5.6.7 Formal Definition . 148
5.6.8 Nash Equilibria of a Negotiation 150
5.6.9 Non-credible Threats in a Negotiation 152

5.7 Bargaining Solutions . 152

6 Evaluation of Negotiation Algorithms 153

7 Advanced Negotiations 155
7.1 Multilateral Negotiation . 155
7.2 Negotiation and Search . 155
7.3 Non-linear and Computationally Complex Utility Functions . 155

6 CONTENTS

Preface

This book is targeted towards computer science students who are completely
new to the topic of automated negotiation. It does not require any prerequi-
site knowledge, except for elementary mathematics and basic programming
skills. I have made this book available for free, so feel free to share it with
anyone you like.

Please note that this book is meant as an organic document that keeps
expanding over time. Therefore, I recommend to regularly check the website
of this book to see if there is any updated version available. Also note
that since this is still only a preliminary version of the final book, some
notations or definitions may change in future versions of this book, or may
have changed with respect to earlier versions.

This book comes with an simple toy-world negotiation framework imple-
mented in Python that can be used by the readers to implement their own
negotiation algorithms and perform experiments with them. This frame-
work is small and simple enough that any reader who does not like to work
in Python should be able to re-implement it very quickly in any other pro-
gramming language of their choice. It can be downloaded from the website
of this book:

https://www.iiia.csic.es/~davedejonge/intro_to_nego

If you have any questions or comments on this book, please send me an
e-mail: davedejonge@iiia.csic.es. I am more than happy to hear your
suggestions so that I can improve this work. Especially, if you feel that
something is not clearly explained, or that something important is missing,
please let me know!

7

https://www.iiia.csic.es/~davedejonge/intro_to_nego
davedejonge@iiia.csic.es

8 CONTENTS

9

10 CONTENTS

Summary of Notation

Basic Negotiations
R The set of real numbers.
R+ The set of positive real numbers.
N The set of natural numbers (including 0).
agi Agent i
Ω The set of all offers in a given negotiation domain.
ω Offer
Ij Issue
sj The size of issue Ij , i.e. sj := |Ij |.
xj Option
xj,l The l-th option of issue Ij .
t Time
(i, p, ω, t) Agent agi proposes offer ω at time t.
(i, a, ω, t) Agent agi accepts offer ω at time t.
η Action type, i.e. a variable that can either adopt the value p or the value a.
T Deadline
N The maximum number of rounds in a negotiation.
ϵ Delay, i.e. the difference between the time a proposal or acceptance was sent

by one agent and the time it was received by the other agent.
h Negotiation history or action history
hoi Observed negotiation- or action- history (observed by agent i)
ui Utility function of agent agi.
ωmax
i The most preferred offer by agent agi

ωmin
i The least preferred offer by agent agi

vji Evaluation function for agent agi and issue Ij
wj
i Weight for agent agi and issue Ij

rvi Reservation value of agent agi (Def. 6).
δ Discount factor.
D Negotiation domain (Def. 7)
Ωp Pareto set, i.e. the set of all Pareto-optimal offers (Def. 12).
opp(D) The amount of ‘opposition’ of a domain D.

CONTENTS 11

Negotiation Strategies
ωrec The last offer that our agent has received from the opponent.
ωnext The offer that our agent is about to propose next.
M Opponent model
λ(t) Aspiration level at time t.
û2 Estimation of ag2’s utility function, as estimated by ag1’s

opponent modeling algorithm.
Ωprop
t The set off all offers that have already been proposed by ag1

before time t.
α Initial value of the aspiration function, i.e. λ(0).
β Target value, i.e. the final value of the aspiration function:

λ(T).
γ The concession parameter.
T ′ Target time.
β∗ Optimal target value for our agent, based on predictions of

our opponent’s future proposals.
Ωrec
t The set of offers that have been received by agent ag1 up until

time t.
coni Function that measures the amount of concession made by

agent agi.
2Ω Power set of the set of offers (i.e. the set of all subsets of Ω).
∆cont ‘concession gain’ of agent 1 at time t.
θmin minimum required concession gain for tit-for-tat strategy.
θmax maximum required concession gain for tit-for-tat strategy.

12 CONTENTS

Opponent Modeling
U Some set of possible utility functions.
πj Proposal
π⃗ Sequence of proposals.
P (u|π1, π2, . . . , πk) The probability that our opponent has utility function u,

given that our agent has received proposals π1, π2, . . . , πk
from that opponent.

y Hypothesis
Y Set of possible hypotheses.
o Observation
O Set of possible observations.
o⃗ Sequence of observations.
P (y|o⃗) Probability that hypothesis y holds, given the sequence of

observations o⃗.
P (o|y) Probability of making observation o when hypothesis y holds.

P̃ Unnormalized probability.
N (r|µ, σ) Probability of drawing the number r from a Gaussian prob-

ability distribution with mean µ and standard deviation σ.
Λn
j Triangular function over issue Ij , with peak at option xj,n

(see Eq. (4.13)).
wj Expectation value for the weight that the opponent assigns

to issue Ij .
vj Expected evaluation function that the opponent applies to

issue Ij .
u Expected utility function for the opponent.
fh(xj,l) The number of times the opponent has proposed an offer

containing option xj,l.
zj Shorthand for the utility offered to us by the opponent in her

j-th proposal to us, i.e.: zj := u1(ωj).
z⃗ Sequence of offered utilities, i.e. z⃗ = (z1, z2, . . .)
I Identity matrix.
K Covariance matrix.
Ki,j Element of the covariance matrix at row i and column j.
κ Kernel function.
Pa(z) Probability that ag2 would accept an offer ω with utility

u1(ω) = z.

Game Theory
a Action
Ai The set of actions available to player i.

CONTENTS 13

G A normal form game.
BRj(ai) The set of actions that are a best response for agent j, against

some action ai of its opponent.
µ Mixed strategy
Mi The set of all mixed strategies for player i
µ⃗ Strategy profile (of mixed strategies).
BRj(µi) The set of mixed strategies that are a best response for

agent j, against some mixed strategy µi of its opponent.
X∗ The set of tuples over some set X.
Xn The n-fold Cartesian product of some set X, i.e. X1 = X,

X2 = X ×X, X3 = X ×X ×X, etc...
ε The ‘empty tuple’.
◦ The concatenation operator for tuples, e.g. (a, b) ◦ (c, d, e) =

(a, b, c, d, e).
Y T The set of terminal tuples among some set of tuples Y .
ν Tree node.
d Depth of a tree node.
H The set of all legal action histories of a turn-taking game.
pl The active player function of a turn-taking game.
Hi The set of all non-terminal histories after which player i is

the active player.
Ah The set of actions that the active player is allowed to choose

after history h.
σ Strategy for a turn-taking game.
σ⃗ Strategy profile for a turn-taking game.
hσ⃗ The unique terminal history generated by strategy profile σ⃗.
Si The set of all possible strategies for player i in some turn-

taking game.
Γh The subgame of Γ at history h.
Hh The set of legal action histories of the subgame Γh.
fobs
i The observation function of player i.
Oi The set of all possible observed histories after which it is

player i’s turn.
AD

i The set of negotiation actions for player i in negotiation do-
main D.

14 CONTENTS

Chapter 1

Introduction

1.1 Characteristics of Negotiation

Whenever we talk about ‘negotiation’ we are referring to any form of commu-
nication between multiple ‘agents’ (which can be either humans or software)
with the goal of coordinating their actions, so that they can achieve a better
outcome for themselves than what they could possibly achieve without such
coordination.

A simple example is the scenario of a group of friends that want to go
to the cinema together. In order to achieve that goal, they have to make a
number of decisions together: which cinema to go to, which movie to watch,
and at what time. If they do not manage to come to an agreement on all
these decisions, then they will not be able to go to the cinema together.
Clearly, coordination is essential to achieve the desired outcome.

In particular, we say that agents are negotiating whenever the following
conditions are satisfied:

1. There is more than one agent.

2. These agents are able to communicate with each other.

3. The agents need to make one or more choices out of a number of
options.

4. Each agent has its own individual preferences over the options.

5. Each agent is autonomous.

The need for the first three of these conditions should be obvious. The
fourth assumption is essential, because if an agent does not have its own
preferences, then it would not have any reason to participate in the nego-
tiations. It could simply let all the other agents make the decision. Note

15

16 CHAPTER 1. INTRODUCTION

however, that this does not mean their preferences need to be different. For
example, suppose two friends called Alice and Bob want to choose a movie
to watch together. Even if they each want to see the same movie, they may
still need to communicate this preference to one another in order to ensure
that they are each aware of this fact. For example, Alice could propose to
Bob to see The Godfather, and then Bob could accept that proposal. In
other words, they still need a short negotiation, to establish their decision.
The key point here, is that the two agents a priori do not know that their
preferences are the same.

Nevertheless, in the rest of this book we will almost always assume that
there is some amount of conflict among the agents. After all, a scenario in
which all agents exactly agree on their preferences is not a very interesting
test case for scientific research. A commonly used example of a scenario
in which two negotiators have conflicting interests, is the case of a buyer
and a seller that are negotiating the price of a car. In this case the agents’
preferences are diametrically opposed: the seller wants to sell the car for
the highest possible price, while the buyer wants to buy it for the lowest
possible price. Despite their conflicting interests, the two agents still aim to
find a compromise that is acceptable to each of them individually and that
they each prefer over the situation that the car is not sold at all.

The fifth assumption means that each agent has at least some partial
freedom to do whatever it wants. If one of the agents does not have any
such freedom at all, then it would mean that that agent would essentially
be a slave to the others and it would not have any negotiation power. For
example, a car seller cannot force the buyer to buy the car. The buyer has
the autonomy to refuse any offer he or she doesn’t like. Similarly, the buyer
cannot force the seller to sell the car either. The seller too has the autonomy
to reject any offer from the buyer.

As a counter example, we can imagine a swarm of robots that are search-
ing through the ruins of a collapsed building in order to find survivors. If
these robots are fully controlled by a central computer, then there is no need
for negotiation. The central computer simply dictates what all the robots
should do.

It should be noted that there are many situations in daily life in which
the above conditions hold, and therefore can be seen as a type of negotia-
tion, even though we normally wouldn’t think of them as a negotiation. In
fact, any time two or more people make a joint decision, it is essentially a
negotiation. So, whenever you ask someone a question like “shall we eat at
19:00?” or “Do you want to go the cinema?” you are essentially starting a
negotiation.

1.2. HISTORY OF AUTOMATED NEGOTIATION 17

Another nice example of a negotiation scenario that we typically do not
think of as a negotiation, is when you do your groceries at the supermar-
ket. In this scenario there are indeed multiple agents, namely the customer
and the supermarket. These two agents jointly aim to come to an agree-
ment about which products the supermarket will sell to the user. Each of
these agents has a certain amount of autonomy: the supermarket can choose
which products it offers and for what price. The customer, on the other had,
can choose which of those products he or she will buy. Furthermore, each
agent has their own preferences: the supermarket aims to make the high-
est possible financial profit, while the customer has preferences over which
products he or she wants to buy, and prefers to buy them for the lowest
possible price. The least obvious requirement, is perhaps the requirement of
communication, as it might not be obvious at first sight that the two agents
are indeed communicating. However, the supermarket is communicating to
the customer by means of labels and price tags on their products. Every
time the costumer sees a label saying something like “1 kg of beef, $6” this
can be seen as a proposal made by the supermarket to the customer. The
customer can then either accept that proposal by taking the product from
the shelf and adding it to their shopping cart, or reject it by walking along
without taking the product. This is, essentially, a form of negotiation. Of
course, it is a somewhat limited form of negotiation since the supermarket
is the only agent here that can make proposals, while the customer can only
accept or reject those proposals, but cannot make any counter-proposals to
the supermarket.

In the literature one sometimes distinguishes between negotiation and
bargaining. The exact definitions differ per author, where ‘bargaining’ is
often used exclusively to refer to the exchange of proposals that can be ac-
cepted or rejected, while ‘negotiation’ often refers to a more general process
in which the agents may use a broader form of communication that allows
them to express their respective interests, or allows them to convince the
other agents to change their points of view. In the rest of this book, however,
we will not distinguish between the two concepts and simply always use the
term ‘negotiation’ even were some authors might argue that ‘bargaining’
would be the more appropriate term.

1.2 History of Automated Negotiation

Of course, in this book we are not just interested in negotiation, but rather
in automated negotiation. That is, the study of how to develop computer

18 CHAPTER 1. INTRODUCTION

programs that can perform negotiations autonomously, either with other
computer programs or with humans (although in this book we will focus
mainly on negotiations between computers only).

The topic of automated negotiation dates back to the 1950’s, starting
with the work of John Nash [37]. Back in those days, however, automated ne-
gotiation was mainly studied from a purely theoretical point of view, rather
than from an algorithmic point of view. The typical approach followed by
Nash and other researchers of his time, would be to argue that the outcome
of a certain negotiation scenario should satisfy a certain set of mathematical
axioms. They would then formally prove that there exists a unique outcome
satisfying those axioms. Several different solution concepts were proposed
in this way, based on different sets of axioms [29, 26, 14].

This changed in 1998 with the seminal paper by Faratin et al. [23].
Rather then trying to find theoretically optimal outcomes, they took a more
practical approach and proposed a number of possible negotiation strategies,
which we will discuss in Chapter 3. This was a great step forwards towards
realistic applications of automated negotiation, because it takes into account
that real agents would typically would not have complete domain knowledge
and would not be willing to share strategic information with each other.

Another pivotal event in the history of automated negotiation was the
inception of the Automated Negotiating Agents Competition (ANAC) in
2010 [9] and the development of the Genius framework [32] on which ANAC
was run. Since then, ANAC has been held almost every year at major A.I.
conferences such as IJCAI and AAMAS and has greatly boosted the number
of papers published on the topic of automated negotiation. Furthermore,
ANAC has led to to the development of hundreds of negotiating agents and
a plethora of different opponent modeling techniques, which are still used by
many researchers as a baseline against which they can test new negotiation
algorithms.

Initially, most research on automated negotiation focused on the most
basic type of negotiations with two agents negotiating over a small set of
possible agreements with linear utility functions [9]. However, over the years,
more and more researchers have started investigating more complex nego-
tiation scenarios. For example, several researchers have studied negotiation
domains with with non-linear utility functions and with an extremely large
number of possible agreements [28, 33]. This was even taken a step further
by considering domains in which the calculation of the utility of just a single
proposal is already computationally complex problem [20, 21, 19].

Other researchers have focused on multi-lateral negotiations (negotia-
tions between 3 or more agents) [38, 22, 20, 4], or the use of machine learn-

1.2. HISTORY OF AUTOMATED NEGOTIATION 19

ing algorithms such as deep learning and reinforcement learning to train
negotiation algorithms [44, 10].

Most of these developments have also been closely mirrored by the vari-
ous editions of ANAC. For example, ANAC 2014 involved negotiations with
non-linear utility functions and extremely large search spaces [25], while
from 2015 to 2018 ANAC focused on multi-lateral negotiations[24]. Then,
in 2019 and 2020 the focus shifted back to small, bilateral negotiations,
but in which each agent only had partial knowledge about its own utility
function [3]. After that, several editions focused on the use of machine
learning to allow the agents to learn the characteristics of their opponents,
from earlier negotiations [40]. Furthermore, from 2017 onward the ANAC
competition was divided into a ‘main league’ and one or more sub-leagues
focusing on more specialized negotiation problems, such as high computa-
tional complexity in the game of Diplomacy [17], multi-lateral negotiations
in a supply-chain environment [35] negotiations between computers and hu-
mans [34], and negotiations in the game of Werewolves [3].

For a long time, the Genius framework, which was written in Java, was
the main platform that researchers used for their experiments in the field of
automated negotiation. It was especially useful because it included a large
set of hand-crafted test-domains that were used in the ANAC competitions
and a large set of agents that participated in those competitions. This
immediately gave researchers access to a vast library of benchmark test
cases and baseline algorithms for their experiments.

However, it has recently been shown, both experimentally [15] and the-
oretically [16], that a very simple negotiation strategy called MiCRO is able
to achieve near-optimal results on the Genius test domains even without
using any form of machine learning or opponent modeling. It was therefore
argued that those hand-crafted test cases should no longer be used.

The Genius framework is no longer maintained, and has now been super-
seded by the NegMas framework [36] as the main platform for research on
automated negotiation. It is written in Python, but it still includes the pos-
sibility to run the Java agents from the Genius framework. Furthermore, it
allows generating random test domains which are harder to tackle than the
hand-crafted ones from Genius. Another framework, called GeniusWeb, was
also developed by the makers of Genius, but this framework never gained
much traction.

20 CHAPTER 1. INTRODUCTION

Chapter 2

Basic Negotiations

In this chapter we discuss the basic ideas of automated negotiation. For
now we will focus mainly on bilateral negotiation. That is, negotiations
between exactly two agents, as opposed to multilateral negotiation, which
takes place between more than two agents. The only exception is that some
of the mathematical definitions below will be given for arbitrary numbers
of agents, because it would not simplify anything if we presented them for
only two agents.

We here focus on bilateral negotiation because they are the simplest
to explain, because they have been studied much more extensively in the
literature and because they are sufficient to explain the most basic aspects
of automated negotiation. We will discuss multilateral negotiations later on
in Chapter 7.1.

2.1 Informal Description

Imagine there are two agents, which we will call the ‘buyer’ and the ‘seller’
respectively, that are negotiating the price of a second-hand car. The ne-
gotiations start with one agent proposing an offer to the other agent. For
example, the seller might start by proposing a price of $10,000. Next, the
buyer can do two things: to accept the proposal, or to reject it. If the buyer
accepts the proposal, then then it becomes a formally binding agreement
and the negotiations are over. Otherwise, if she rejects the proposal, then
she can make a counter-proposal. For example, she might propose a price
of $5,000. Next, it is again the seller’s turn. The seller now also has the
choice between accepting the last proposal, or rejecting it and making a new
proposal. For example, she could then propose a price of $9,500. This will

21

22 CHAPTER 2. BASIC NEGOTIATIONS

continue until they come to an agreement, or one of the agents decides to
withdraw from the negotiations, or a given deadline has passed, or when a
fixed maximum number of proposals have been made.

In this example we assumed the agents negotiated according to the so-
called alternating offers protocol (AOP) [41], meaning that the agents
take turns making proposals. Specifically, it means that an agent is not
allowed to make two proposals in a row. After making a proposal the agent
first needs to wait for the other agent to respond and make a counter-
proposal before she can make a new proposal herself. While this is certainly
not the only protocol for automated negotiation, it does seem to be the one
that is most commonly used in the literature.

In the field of automated negotiation we typically assume there is a fixed
set of possible offers that the agents can propose to one another. This
set is called the offer space (or sometimes agreement space). In the
example of the car sale, the offer space consisted of every possible price that
the seller could possibly ask, or that the buyer could possibly offer. So,
this could be the set of all integers. One important thing to notice about
this example, is that the agents were negotiating over just one issue: the
price of the car. This is what we call a single-issue negotiation. In many
cases in the literature, however, one studies multi-issue negotiations.
That is, negotiations in which each proposal may involve multiple different
components. For example, suppose there are two friends, Alice and Bob,
that want to go to the cinema together. They need to agree on three different
issues:

1. Which movie they will see.
2. Where they will see this movie (in which cinema).
3. When they will see this movie (which day of the week and at which

time).

One way to conduct such multi-issue negotiations would be to negotiate each
issue separately, one by one. However, a more common approach in the lit-
erature is to just negotiate all issues at the same time. This means that each
proposal indicates a value for all three issues at the same time. For example,
Alice might start by proposing to see The Godfather in cinema Rialto on
Friday at 20:00. Bob might then reject this proposal, and instead propose
to see Casablanca, in cinema Paradiso, on Saturday at 18:00, etcetera.

We should remark that in this book we will use the term offer to refer
to a potential outcome of a negotiation. That is, something that can be
proposed or accepted or rejected. So, in the scenario of the car sale, the
price of $10,000 would be an example of an offer, while in the scenario of

2.2. FORMAL MODEL 23

the two friends who are going to the cinema, the tuple (The Godfather,
Rialto, Fri 20:00) would be an example of an offer. Furthermore we will use
the term proposal to refer to the action of proposing an offer. Finally, we
use the term agreement to refer to an offer that has been accepted as the
final outcome of the negotiation between the two agents. We should note
however, that the literature is not very consistent on this matter. Other
authors may use these terms in different ways, or they may use alternative
terms such as deal, contract, or bid with their meanings being different
for each author.

2.2 Formal Model

In order to be able to implement an agent that can negotiate, we first need
to have a formalization of what ‘negotiation’ means exactly. We will here
discuss this formal model. We assume there are exactly two agents, which
we denote by ag1 and ag2 respectively.

2.2.1 The Offer Space

In order to implement a negotiating agent, the first thing we need to know
is which offers the agents can possibly propose. This is known as the offer
space or agreement space and is usually denoted by Ω. In the example
of a single-issue car sale, the set of possible offers was the set of all positive
integers N, where each number k ∈ N represents a proposal to trade the car
for a price of k dollars. A single offer from the offer space is usually denoted
by ω.

In the case of a multi-issue negotiation, the offer space can be written
as the cartesian product of smaller sets that we call issues:

Ω = I1 × I2 × · · · × Im

so each offer ω is a tuple:

ω = (x1 , x2 , . . . , xm)

where each xj ∈ Ij . For each issue, we will refer to its elements as its
options.

For example, the scenario in which two friends are planning to see a
movie together, can be modeled as a negotiation over the following three

24 CHAPTER 2. BASIC NEGOTIATIONS

issues, representing the movie, the cinema, and the time slot, respectively:

I1 = {The Godfather ,Casablanca,The Big Lebowski}
I2 = {Rialto,Paradiso}
I3 = {Fri 18:00,Fri 20:00,Fri 22:00,Sat 18:00,Sat 20:00,Sat 22:00}

We see that the issue ‘movie’ has 3 options, the issue ‘cinema’ has 2 options,
and the issue ‘time slot’ has 6 options. So, the offer space contains 3×2×6 =
36 possible offers.

Note that issues may or may not have a natural ordering. For example,
the issue I3 above, representing the time slot, is naturally ordered from early
to late. On the other hand, the other two issues I1 and I2 do not have any
ordering (of course, we could put them in any order we like, such as an
alphabetical order, but that is not very meaningful for the negotiations).

Furthermore, note that the division of an offer space into separate issues
can sometimes be a bit arbitrary. For example, rather than having one issue
representing the time slot, we could instead have defined two separate issues:
one issue for the day of the week, and one issue for the time. So, we could
have defined the offer space as a product of the following 4 issues:

I1 = {The Godfather ,Casablanca,The Big Lebowski}
I2 = {Rialto,Paradiso}
I3 = {Fri, Sat}
I4 = {18:00, 20:00, 22:00}

This would not have made any difference. This also works in the other direc-
tion: if we wanted, we could have just ignored the separate issues altogether
and model the entire domain as one single issue containing 36 different op-
tions, without any structure. However, as we will see in Section 2.2.3.3,
decomposing the offer space into separate issues has the advantage that it
allows us to define simple utility functions that are linear combinations of
smaller functions that are each defined over a single issue.

Also note that in a real-world scenario there may exist constraints among
the issues. For example, Cinema Rialto might only screen The Godfather on
Saturdays, and Cinema Paradiso might not screen any movie at all on Friday
at 18:00. So, in that case not every combination of options would be possible,
and the offer space Ω would only be a subset of the Cartesian product
I1×I2×· · ·×Im. However, in most of the literature such constraints are not
taken into account and one typically assumes that all possible combinations
of options are allowed.

2.2. FORMAL MODEL 25

2.2.2 The Alternating Offers Protocol

The next thing we need to specify is the negotiation protocol. That is, the
rules that determine when which agent is allowed to propose or accept which
offer, and when a proposal will be considered a formally binding agreement.

The most commonly used protocol for bilateral negotiations, is the al-
ternating offers protocol (AOP) which we have already seen above. In this
protocol the agents take turns, so the protocol needs to specify which of the
two agents will make the first proposal. In this section we will, without loss
of generality, assume that this is always agent ag1.

At the start of the negotiations, agent ag1 can choose any ω ∈ Ω from the
offer space and propose it to ag2. Next it is agent ag2’s turn. Agent ag2 can
now either accept the previous proposal from ag1, or propose an alternative
offer ω′ ∈ Ω. If ag2 accepts the previous offer ω then the negotiations are
over and ω will be considered a formally binding agreement. Otherwise, if
ag2 does not accept ω and instead makes a new proposal, then we say that
ag2 rejects the offer ω. Next, it is again ag1’s turn. This time, ag1 can
choose between accepting the previously received proposal ω′, or rejecting
it and proposing a new offer ω′′ from the offer space Ω.

This continues until one of the following stopping criteria is satisfied:

1. A proposal is accepted.
2. A given temporal deadline T has passed.
3. A maximum number of rounds N have passed.

In the first case we say the negotiations have succeeded, while in the other
two cases we say the negotiations have failed, meaning that the agents
did not manage to come to any agreement. When we say that a ‘round ’
has passed, we mean that an agent has proposed or accepted an offer. So,
if N = 10 it means that each agent can make at most 5 proposals (or 4
proposals and an acceptance).

We should remark here, that many authors assume there is only a tempo-
ral deadline, but no maximum number of rounds, or vice versa. However, if
there is no temporal deadline then we can equivalently just say that T =∞.
Similarly, if there is no maximum number of rounds, then this is equivalent
to saying that N =∞. So, we can always say—without loss of generality—
that there is a temporal deadline as well as a maximum number of rounds,
as long as we allow these values to be infinite.

In the rest of this book we will use the notation (i, p, ω, t) to indicate that
agent agi proposes offer ω at time t, and we will use the notation (i, a, ω, t)
to indicate that agent agi accepts offer ω at time t. We follow the convention
that t = 0 represents the time at which the negotiations start.

26 CHAPTER 2. BASIC NEGOTIATIONS

Definition 1. We define a negotiation action to be a tuple

(i, η, ω, t) ∈ {1, 2} × {p, a} × Ω× R+

where i represents the index of the agent performing the action, and η rep-
resents the type of the action, which can be either the symbol p (‘propose’),
or the symbol a (‘accept’). Furthermore, ω is the offer that is being proposed
or accepted, and t is the time at which the agent proposes or accepts the
offer. We define a proposal to be negotiation action for which η = p and
we define an acceptance as a negotiation action for which η = a.

Some authors also include a third type of action, besides ‘propose’ and
‘accept’, which is called ‘withdraw ’. If an agent withdraws, it means that
the agent chooses to end the negotiations immediately, without agreement.
So, this also adds a fourth stopping criterion to the three that we men-
tioned above. However, since this type of action does not play an important
role in the rest of this book, we prefer not to include it here, to keep the
formalization simple.

Whenever two agents are negotiating with each other, they obviously
need to be connected to each other through some communication channel
such as the Internet or a local network. This means that whenever one agent
proposes an offer, it will take some time, due to network latency, for the other
agent to receive that proposal. Since this delay is typically unpredictable, we
will model it as a random variable denoted ϵ. This motivates the following
definition.

Definition 2. A negotiation history h is a finite list that alternates be-
tween negotiation actions aj and positive real numbers ϵj ∈ R+:

h =
(
(i1, η1, ω1, t1) , ϵ1 , (i2, η2, ω2, t2) , ϵ2 , (i3, η3, ω3, t3) , ϵ3 , . . .

)
such that the negotiation actions appear in chronological order (i.e. for all
j we have tj ≤ tj+1).

In this definition, each ϵj represents the time it takes for the action
(ij , ηj , ωj , tj) to be received by the other agent. So, a proposal made at time
tj will be received by the other agent at time tj + ϵj . Each ϵj is assumed to
be drawn independently from some probability distribution.

A negotiation history is a list containing negotiation actions, which them-
selves are defined as 4-tuples. Furthermore, in the case of multi-issue ne-
gotiations, the offers ω inside those tuples are also tuples. For example, a

2.2. FORMAL MODEL 27

negotiation history with 10 negotiation actions could look as follows:

h =
(
a1 , ϵ1 , a2 , ϵ2, . . . , a9 , ϵ9 , a10 , ϵ10

)
=

(
(1, p, ω1, t1), ϵ1, (2, p, ω2, t2), ϵ2, . . . , (1, p, ω9, t9), ϵ9, (2, a, ω9, t10), ϵ10

)
=

(
(1, p, (x11, x

2
1, x

3
1), t1), ϵ1, (2, p, (x12, x

2
2, x

3
2), t2), ϵ2,

. . . , (1, p, (x19, x
2
9, x

3
9), t9), ϵ9, (2, a, (x19, x

2
9, x

3
9), t10), ϵ10

)

where each ak is a negotiation action and each xjk ∈ Ij is an option from
the j-th issue in the k-th proposal. In this example we assumed that the
domain has three issues. Note that in the 10-th action agent ag2 accepts the
offer ω9 that was proposed by ag1 directly before that.

We can now formally define the AOP as follows.

Definition 3. We say a negotiation history h satisfies the AOP (with dead-
line T and maximum number of rounds N) if and only if all of the following
conditions hold:

1. For any two consecutive negotiation actions aj = (ij , ηj , ωj , tj) and
aj+1 = (ij+1, ηj+1, ωj+1, tj+1) in h, we have:

(a) ij ̸= ij+1, and

(b) tj + ϵj < tj+1

2. A negotiation action with η = a can only appear as the last action in
the negotiation history.

3. If (i, η, ω, t) and (i′, η′, ω′, t′) are the second-last and last actions of the
negotiation history respectively and η′ = a, then we must have ω = ω′.

4. For all negotiation actions (i, η, ω, t) in h we have t ≤ T .
5. The history h can contain at most N negotiation actions.

The first rule says that the two agents have to alternate turns and that
an agent can only propose or accept an offer after it has received the previous
proposal from the other agent. The second rule says that the negotiations
are over as soon as one agent accepts an offer. The third rule says that an
agent can only accept the offer from the previous proposal and not from any
earlier proposals. The fourth rule says that the negotiations are over when
the deadline T has passed, and the last rule says that the negotiations are
over as soon as N negotiation actions have been made.

28 CHAPTER 2. BASIC NEGOTIATIONS

Definition 4. Let h be a negotiation history that satisfies the AOP and let
ak = (ik, ηk, ωk, tk) be the last negotiation action of this history. Then, the
AOP defines that the negotiation has ended in agreement if ηk = a and
tk + ϵk < T . In that case we say that ωk is the accepted offer. Otherwise,
we say the negotiations have failed.

Note that this means that even if an agent accepts an offer before the
deadline, the negotiations may still fail if the other agent does not receive
this acceptance message before the deadline.

The alternating offers protocol is also displayed as a finite-state machine
in Figure 2.1.

It is important to note that each individual agent cannot observe the
delays. That is, if agent 1 proposes an offer, then he will only know that
time t at which he proposed the offer, but he will not know the time t + ϵ
at which the offer was received by agent 2. On the other hand, agent 2 will
only observe the time t+ ϵ at which she received that proposal, but she will
not know the exact time t at which it was sent. In other words, each of
the agents only has a partial view of the negotiation history, and neither of
them knows the full history h. This motivates the following definition.

Definition 5. An observed negotiation history is a list of negotiation
actions, sorted in chronological order (i.e. in order of increasing values of
t). Specifically, if h is a negotiation history:

h =
(
(1, η1, ω1, t1) , ϵ1 , (2, η2, ω2, t2) , ϵ2 , (3, η3, ω3, t3) , ϵ3 , . . .

)
then the corresponding observed negotiation history ho1 for agent 1, is:

ho1 =
(
(1, η1, ω1, t1) , (2, η2, ω2, t2 + ϵ2) , (3, η3, ω3, t3) , . . .

)
while the corresponding observed negotiation history ho2 for agent 2 is:

ho2 =
(
(i1, η1, ω1, t1 + ϵ1) , (i2, η2, ω2, t2) , (i3, η3, ω3, t3 + ϵ3) , . . .

)
So, if h is the true negotiation history, then agents 1 and 2 will only be

aware of their respective observed histories ho1 and ho2.

In the rest of this book we will often just use the term ‘history’ or
‘negotiation history’ when we actually mean an observed negotiation history,
because it should be clear from the context what we mean.

2.2. FORMAL MODEL 29

No
Agreement

Agent 1’s
turn

Agent 2’s
turn

Agreement

Deadline Passed or
Max. Num. Proposals Made

Deadline Passed or
Max. Num. Proposals Made

Accept Accept

Propose

Propose

Figure 2.1: The alternating offers protocol as a finite-state machine.

30 CHAPTER 2. BASIC NEGOTIATIONS

2.2.2.1 Some Remarks

Some authors model the action of rejecting a proposal and the action of
making a counter-proposal as two separate actions. However, since in the
AOP a counter-proposal is always preceded by a rejection, this distinction
is not really necessary. So, in this book we follow the convention that the
act of rejecting the previous proposal and the act of making a new proposal
are modeled as one single action.

At first sight, it may seem a bit unrealistic to assume that there is a
single deadline T which is imposed upon the two agents. After all, in a real-
world negotiation, who would impose such a deadline onto the two agents?
However, we can imagine that in a real scenario each agent agi itself has its
own individual deadline Ti, which may be determined by various external
factors. In that case, we can simply define the global deadline T as the
individual deadline that comes the earliest. That is: T := min{T1, T2}. We
can imagine that before the negotiations begin each agent announces his
personal deadline Ti to the other agent, so that both agents will be aware
of the global deadline T .

Arguably less realistic, is the assumption that the agents have a maxi-
mum number of proposals N that they can make. The main advantage of
this assumption is that it makes it easier to analyze the negotiations us-
ing mathematical or game-theoretical techniques that require a fixed and
commonly-known number of rounds. However, one major disadvantage of
including a maximum number of proposals, is that it implies an asymmetry
between the two negotiators, since the agent that has the last turn will not
be able to make any new proposals, and thus will be forced to either accept
the last proposal or to end the negotiations without agreement.

Opinion. I personally have never been a fan of negotiations with a
fixed maximum number of proposals N . This is because I can’t really
imagine any real-world situation in which the two negotiators would
face such a constraint and in which the number N would be known to
both negotiators in advance. The only similar scenario I can imagine,
is that either of the negotiators is human and therefore would get tired
after rejecting a certain number of proposals and give up. However,
even in that case I don’t think there would be a clearly fixed number
N that is known by both negotiators in advance. Instead, I think it
would be more realistic to model this with a random variable that
assigns a probability P (N) to every possible value of N , to represent

2.2. FORMAL MODEL 31

the probability that the human would be too tired to continue after
N rounds.

Finally, we should remark that according to the definition of the AOP
that we used here, an agent is only allowed to accept the last proposal it
received from its opponent. That is, an agent is not allowed to accept any
proposals that it received from the opponent in any of the earlier rounds.
So, if an agent does not immediately accept a certain offer ω proposed by the
opponent, then the possibility of accepting that offer may be lost forever.
While this may seem overly strict, in practice this rule is not much of a
restriction because if an agent ag does want to accept an offer ω that was
proposed by the opponent ag′ in an earlier round, then instead agent ag
can simply propose that offer again itself. Since the opponent ag′ already
proposed it earlier, there are good reasons to believe that ag′ will now be
willing to accept it (more about this later in Section 3.4).

2.2.3 Utility Functions

The negotiation protocol defines what the agents are allowed to do, but does
not specify anything about how an agent would choose between its various
legal actions. That is, it does not specify the agents’ preferences. Such
preferences are typically modeled by means of utility functions. If we see
negotiations as a game, and we see the negotiation protocol as the rules of
the game, then the utility functions specify, for each agent, its goal in the
game.

Clearly, each agent has its own preferences over the set of possible agree-
ments. For example, in the case of a negotiation between a buyer and seller
over the price of a car, the seller prefers to sell the car for the highest possi-
ble price, while the buyer prefers to sell the car for the lowest possible price.
To model these preferences we assume that each agent has its own personal
utility function ui, which is a map from the set of offers to the set of real
numbers:

ui : Ω→ R

A higher utility function represents a more desired outcome. So, each agent
aims to make an agreement for which his utility value is as high as possible.
In the example of the car sale, the seller would have a utility function that
strictly increases as a function of the price, while the buyer has a utility
function that strictly decreases as a function of the price.

32 CHAPTER 2. BASIC NEGOTIATIONS

In the rest of this paper it will turn out useful to use the notation ωmax
i

for the offer most preferred by agent agi, and the notation ωmin
i for the offer

least preferred by agent agi:

ωmax
i := argmax

ω∈Ω
{ui(ω)} (2.1)

ωmin
i := argmin

ω∈Ω
{ui(ω)} (2.2)

2.2.3.1 Von Neumann-Morgenstern Utilities

When we only look at a single negotiation, the interpretation of the utility
functions is clear: they represent the agents’ respective preferences over
the possible outcomes of that negotiation. However, you typically do not
implement a negotiation algorithm to use it only one time and then throw
it away. Ideally, it should be possible to use the same negotiation algorithm
more than once. But then, how do we interpret the utility functions? After
all, if we use the algorithm, say, five times, then it may make five different
agreements. But how do we determine which combination of five agreements
is the best?

While there are many possibilities, the most obvious and most commonly
used interpretation is that the agent would prefer those outcomes that max-
imize the sum of their utility values (or equivalently: the average). That
is, if the algorithm is used n times, then the agent agi aims to maximize∑n

k=1 ui(ωk), where ui is the utility function of the agent and ωk the agree-
ment reached in the kth negotiation. Utility functions that are interpreted
in this way are called von Neumann - Morgenstern utilities. In the
rest of this book we will always assume that utility functions are such von
Neumann-Morgenstern utilities, unless specified otherwise.

One important aspect of von Neumann-Morgenstern utilities is that we
can add any arbitrary constant to them or multiply them with any arbitrary
positive constant, without changing the actual preferences. In other words,
if a and b are two arbitrary real numbers (but with a > 0) and ui is the
utility function of our agent, then it should not make any difference if we
used the utility function a · ui + b instead of ui. This, in turn, means that if
the offer space Ω is finite, then we can always normalize the utility function
such that the offer with highest utility has utility value ui(ω

max
i) = 1 and

the offer with lowest utility has utility value ui(ω
min
i) = 0. We will call this

a normalized utility function.

2.2. FORMAL MODEL 33

Note that if ui is some arbitrary utility function, then it is easy to check
that the utility function u′i defined as follows is a normalized utility function.

u′i :=
ui − ui(ω

min
i)

ui(ωmax
i)− ui(ωmin

i)

Since any von Neumann-Morgenstern utility function over a finite offer space
can be normalized, it is often assumed in the literature that the agents’
utility functions are indeed normalized.

2.2.3.2 Self-interested Agents

In the rest of this book, we will assume that agents are always purely self-
interested with respect to their utility functions. This means that each agent
only aims to maximize its own utility function, and does not care at all if
its opponents also receive high utility values.

Of course, the point of automated negotiation is that agents need to
compromise. An agent that only makes proposals that yield high utility for
itself and low utility for its opponent will never be able to come to an agree-
ment and therefore only end up with low utility. So, in negotiations, even a
purely-self interested agent still needs to take the other agents’ preferences
into account as well. However, the point is that when an agent makes a
concession to its opponent, it does that not because it wants the opponent
to receive more utility, but rather only because it needs to concede, to secure
high utility for itself.

Now, this may sound like we are only trying to model very selfish and
anti-social agents that do not care about each others’ welfare. However, it
is extremely important to understand that this is not the case. That is,
‘self-interested’ does not mean the same as ‘selfish’.

For example, suppose that we have two agents ag1 and ag2 with respec-
tive utility functions u1 and u2. Furthermore, suppose that agent ag1 is a
social agent that cares just as much about the opponent’s utility as it cares
about its own. So, it aims to maximize the sum u1 + u2 of the two utility
functions (this is also known as the social welfare). Now, note that we can
simply define a new utility function u′1 for agent ag1 as follows:

u′1 := u1 + u2

We now see that, even though ag1 is a very social agent, we can at the
same time say that, with respect to utility function u′1, it is purely self-
interested. In other words, the question whether or not an agent is self-

34 CHAPTER 2. BASIC NEGOTIATIONS

interested depends entirely on how we define its utility function and has
nothing to do with the question whether or not it is selfish.

2.2.3.3 Linear Utility Functions

In the case of multi-issue negotiations, one often assumes linear utility
functions. We say a utility function is linear, if it is composed as a linear
combination of several smaller functions, each one defined over one of the
issues of the domain. That is:

ui(ω) =

m∑
j=1

vji (xj)

where:
ω = (x1, x2, . . . , xm) ∈ I1 × I2 × · · · × Im

and each vji is a function that maps issue Ij to the real numbers: vji : Ij → R.
We will call these functions vji the evaluation functions. The superscript
j refers to the issue Ij for which it is defined, while the subscript i refers to
the agent agi to which it belongs.

Alternatively, linear utility functions are often written as:

ui(ω) =
m∑
j=1

wj
i · v

j
i (xj) (2.3)

where the wj
i are the so-called weights, which typically sum to one:∑m

j=1w
j
i = 1. However, this expression is not fundamentally different from

the expression without weights, as the weights can simply be ‘absorbed’ in-
side the evaluation functions vji . That is, to re-write the second expression

into the form of the first expression, we simply define vji
′
:= wj

i · v
j
i .

Nevertheless, the second expression is often preferred, because it allows
to emphasize that an agent might consider some issues more important than
other issues, by giving them a higher weight. Furthermore, in this form it is
easier to define utility functions that are normalized, because all you need
to do is choose the weights and evaluation functions such that the following
conditions are met:

� All evaluation functions vji are mapped into the interval [0, 1].

� Each issue Ij has at least one option xj ∈ Ij for which vji (xj) = 0.

� Each issue Ij has at least one option xj ∈ Ij for which vji (xj) = 1.

� The weights sum to one:
∑m

j=1w
j
i = 1

2.2. FORMAL MODEL 35

Just be careful not to confuse the notation w for weights, with the notation
ω for offers.

One should realize, that when we say a utility function is linear, it only
refers to the fact that it is a linear combination of evaluation functions vji ,
while those evaluation functions themselves may still be non-linear. In fact,
it often does not even make sense to ask if a certain evaluation function is
linear or not, unless its options are numerical. For example, say that Alice’s
preferences over which movie to watch are given as follows:

v1Alice(The Godfather) = 0

v1Alice(Casablanca) = 1

v1Alice(The Big Lebowski) = 0.7

There is no way to tell if this function is linear or not. This is because the
options of this issue (The Godfather, Casablanca and The Big Lebowski) are
non-numerical. For the same reason it normally does not make sense to ask
if a utility function is linear if that function is defined over an offer space
that only consists of a single issue.

In the rest of this book, we will sometimes abuse notation and write
vji (ω) when we actually mean vji (xj), where xj is the j-th component of ω.
That is:

vji (x1, x2, . . . , xj , . . . , xm) := vji (xj)

2.2.4 Reservation Values

In many real negotiation scenario it may happen that some proposals are so
bad that you would rather not to make any agreement at all than to accept
any of them.

For example, in the example of a car sale, if the seller asks a ridiculously
high price, then the buyer would prefer not to buy the car at all than to pay
that price. This can be either because the buyer knows she can get a better
deal elsewhere, or because she simply doesn’t have that amount of money,
or because she would prefer not to own a car at all, rather than to pay that
much.

This means that a negotiating agent should not only be able to compare
the various possible offers with each other, but should also be able to com-
pare them with the situation that the negotiations end without agreement.
For this, we define the reservation value.

36 CHAPTER 2. BASIC NEGOTIATIONS

Definition 6. An agent’s reservation value is the amount of utility it
receives when the negotiations end without agreement.

This definition implies that a rational agent would never accept any
proposal that yields a utility value smaller than that agent’s reservation
value. After all, the agent by definition prefers to not make any agreement
at all than to accept that proposal. Another way to look at it, is to say that
the reservation value rvi is the minimum amount of utility that the agent
agi is guaranteed to get. After all, agi can always choose to withdraw from
the negotiations, or to reject any proposals it receives. Therefore, a rational
agent would only propose or accept any offer that offer yields more utility
than that its reservation value.

Here is another example. Suppose two friends, Alice and Bob, want to
go out for dinner together and they are discussing where to go. They have
three options: a Chinese restaurant, an Italian restaurant, or a Mexican
restaurant. Let us denote this as follows:

Ω = {CHI , ITA,MEX }.

Unfortunately, they have different preferences, so they will have to find a
compromise. If they can’t agree about where they will eat, then they will
each just have to stay home and eat alone. Let’s suppose that Alice assigns
the following utility values to the options:

uAlice(CHI) = 1, uAlice(ITA) = 4, uAlice(MEX) = 5

and that her reservation value is 3, which we denote as:

rvAlice = 3

The fact that she assigns the lowest utility to Chinese food means that this is
her least preferred option. In fact, the utility she assigns to Chinese food is
even lower than her reservation value. This means that she dislikes Chinese
food so much, that she would prefer to just eat alone at home than to eat
Chinese food with Bob. Furthermore, we see that she prefers Mexican food
over Italian food. However, the utility she assigns to Italian food is still
higher than her reservation value, which means that she still prefers to eat
Italian food with Bob, than to stay at home.

The situation that the negotiations end without agreement is often called
the conflict outcome, or disagreement.

One thing you may be wondering now, is what an agent should do when
it receives an offer ω for which the utility is exactly equal to the reservation

2.2. FORMAL MODEL 37

value, i.e. ui(ω) = rvi. We argue that in that case the agent should also
reject the offer. After all, if he accepts the offer he will certainly receive rvi,
while if he rejects it, he is also guaranteed to obtain at least rvi, but on top
of that he also still has the possibility to get a better deal later and thus
obtain even more utility.

Observation 1. A rational agent agi should never accept any offer ω for
which his utility ui(ω) is smaller than or equal to his reservation value rvi.

2.2.5 Discount Factors

In the literature, many authors have studied models of negotiation in which
the utility obtained by the agents does not only depend on the agreement
they make, but also on the time at which they make that agreement. That
is, the faster they make the agreement, the higher their respective utilities.
This is typically modeled by introducing so-called discount factors. In a
negotiation with discount factors, when the agents come to an agreement ω
each agent receives a discounted utility ui(ω, t) defined as:

ui(ω, t) := ui(ω) · δt

where δ ∈ (0, 1] is called the discount factor, t is the time at which the
agents come to an agreement and the function ui on the right-hand side is
the ordinary utility function as defined previously, which in this context is
also referred to as the undiscounted utility. Note that since δ is between
0 and 1, the discounted utility decreases over time. Furthermore, note that
if δ = 1 then the discounted utility is just the same as the undiscounted
utility, so this is equivalent to saying that there is no discount factor at all.

Furthermore, when studying negotiations with discount factors, it is
sometimes also assumed that the reservation values are discounted as well.
This means that if one of the two agents decides to withdraw from the ne-
gotiations at time t, then each agent agi receives its respective discounted
reservation value rvi · δti . In that case it may indeed be beneficial for an
agent to withdraw from the negotiations early, if it seems unlikely that they
will come to a good deal. This is why some authors include a ‘withdraw’
action in the AOP, as we briefly discussed in Section 2.2.2.

Opinion. I personally feel that the presence of discount factors is
a somewhat unrealistic assumption. It seems to me that most re-
searchers only make this assumption in order to obtain more interest-
ing results, rather than because it yields a realistic model of negoti-

38 CHAPTER 2. BASIC NEGOTIATIONS

ation. For example, Rubinstein [42] used discount factors because it
enabled him to find a mathematically optimal solution for certain ne-
gotiation scenarios. More generally, the advantage of discount factors
is that they force the agents to concede quicker. After all, without
discount factors an agent could simply refuse to make any concessions
until very close to the deadline.
Some people might argue that discount factors could be used to model
a human’s impatience. However, that argument of course only holds
in the case that you are modeling negotiations with humans. Fur-
thermore, I don’t think it is very obvious that a human’s impatience
is indeed accurately modeled by an exponentially decreasing discount
factor.
Another argument that some people might use in favor of discount
factors, is that they can model the fact that certain goods such as
fish or flowers are perishable, so their value quickly decreases over
time. However, I don’t think that that is a strong argument, since the
typical time scale for the decay of such products is several days, which
is much longer than the time span of a typical negotiation involving
such products, which might take place in a matter of seconds, or at
most minutes.

2.2.6 Knowledge

The final ingredient that is still missing before we can fully specify a nego-
tiation scenario, is the question how much knowledge each agent has about
the other agents’ utility functions, reservation values and discount factors
(if present).

Authors that mainly focus on the theoretical aspects of negotiation, often
assume full knowledge about the utility functions and reservation values
because it is typically much harder to derive formal mathematical results
under partial knowledge.

On the other hand, authors that focus more on algorithms and exper-
iments often assume that each agent only knows its own utility function
and reservation value, while it does not know anything about its opponent’s
utility function or reservation value, except maybe that the opponent’s util-
ity function is linear. Furthermore, they may sometimes assume that some
of the issues are ordered, and that each agent knows, for each such issue,
whether the opponent’s preference over the options of that issue are increas-
ing or decreasing w.r.t the ordering (e.g. Alice knows that Bob prefers to

2.2. FORMAL MODEL 39

go to the cinema as late as possible).
Of course, for many commercial applications it would be unrealistic to

assume the agents know each other’s utility functions. After all, each agent
would aim to exploit the other one as much as possible and would therefore
try to hide its utility function. Nevertheless, theoretical research that does
assume full knowledge is still very valuable, since it allows us to determine a
theoretical ‘upper bound’ to what an agent could hypothetically achieve in
the ideal case of full knowledge (for example, the Nash bargaining solution
[37] which we will discuss later on in this book). This, in turn, allows us
to quantify how well practical algorithms are able to approach that upper
bound [16].

Furthermore, one can argue that the assumption of having no knowledge
about the opponent’s utility at all, is also unrealistic. For example, a car
dealer knows that some cars are more valuable than other cars and under-
stands that the customer’s preference is largely determined by his budget. I
would therefore argue that in many negotiation scenarios the most realistic
model lies somewhere in between. A real negotiator would not know the ex-
act utility function of its opponent, but would have at least some background
knowledge about the negotiation domain, from which it could make some
basic assumption about the opponent’s preferences. Another good example
of this, is given in [18] and [19] in which two logistics companies negotiate
the exchange of truck loads. Their utility functions depend on expenses like
fuel price and truck driver salaries. While neither company knows exactly
how much the other company pays for fuel and salaries, they do know that
these prices cannot be radically different between the two companies. So,
they can each make an educated guess about the opponent’s utility function.

2.2.7 Negotiation Domains

Definition 7. A negotiation domain D for n agents consists of the fol-
lowing components:

� An offer space Ω.
� For each i ∈ {1, 2, . . . , n}:

– a utility function ui : Ω→ R
– a reservation value rvi ∈ R
– a discount factor δi ∈ (0, 1]

A negotiation domain with two agents (i.e. n = 2) is called a bilateral
negotiation domain and a negotiation domain with more than two agents

40 CHAPTER 2. BASIC NEGOTIATIONS

(i.e. n > 2) is called a multilateral negotiation domain.

Definition 8. In a negotiation domain for n agents, each offer ω corre-
sponds to an n-tuple which we call the utility vector and which consists of
the utility values of all agents:

(u1(ω), u2(ω), . . . , un(ω))

It is often instructive (in the case of bilateral negotiations) to plot the
utility vectors of a given negotiation domain in a diagram such as in Fig-
ure 2.2. We will call this a utility space diagram or simply a utility
diagram. In such diagrams, each black dot represents one offer. For ex-
ample, if an offer ω yields utility values u1(ω) = 0.3 and u2(ω) = 0.6 for
the two agents respectively, then that offer is represented by a black dot
with coordinates (0.3 , 0.6). Furthermore, in such diagrams we may draw
the reservation values of the agents with a horizontal line and a vertical line
respectively. For example, if agent ag1 has a reservation value of rv1 = 0.1,
then we draw a vertical line at x = 0.1 and if agent ag2 has a reservation
value of rv1 = 0.2, then we draw a horizontal line at y = 0.2.

Whenever we refer to such diagrams we may use somewhat sloppy lan-
guage and use the term ‘offer’ or the symbol ω when we technically mean
the utility vector of that offer.

Of course, it is important to remember that we often assume that neither
of the two agents knows the utility function of the other and therefore neither
of the two agents would be able to draw such a diagram. In other words,
such diagrams are typically only meaningful to you, as the researcher, but
not to the agents themselves.

A bilateral negotiation domain is called a split-the-pie domain if it
satisfies ∀ω ∈ Ω : u1(ω) + u2(ω) = 1. It is called this way, because it is as if
the two agents are negotiating about how to divide a pie among them. The
size of the pie is 1, and each agent’s utility is proportional to the size of the
pie she gets. So, if ag1 gets, say, 40% of the pie then her utility is 0.4 and
therefore ag2 gets 60% of the pie, corresponding to a utility of 0.6. Another
example of split-the-pie domain is the scenario of the seller and the buyer
that are negotiating the price of a car. A utility diagram of a split-the-pie
domain is displayed in Figure 2.3.

2.2.7.1 Single-Issue Domains vs. Multi-Issue Domains

It is sometimes argued that multi-issue negotiations are more complex than
single-issue negotiations, because they involve making trade-offs between the
various different issues. However, this is somewhat misleading.

2.2. FORMAL MODEL 41

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

rv2

rv1

Utility of Agent 1

U
ti
li
ty

of
A
g
en
t
2

Figure 2.2: Utility space diagram. Every dot is the utility vector of one offer
ω in the offer space Ω. The red lines represent the reservation values of the
two respective agents.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

rv2

rv1

Utility of Agent 1

U
ti
li
ty

of
A
ge
n
t
2

Figure 2.3: Utility space diagram of a split-the-pie domain. Note that all
utility vectors lie on the line y = 1− x.

42 CHAPTER 2. BASIC NEGOTIATIONS

Of course, if you compare a single-issue domain D1 that contains 10
different offers, with a multi-issue domains D2 that contains 3 issues with
10 options each, then indeed a negotiation over the multi-issue domain will
be more complex because it involves 103 = 1, 000 offers in total. However,
this is not because there are multiple issues, but rather because the domain
simply contains more offers.

In fact, if we compare domain D2 with a single-issue domain D3 of the
same size (i.e. with 1,000 offers), then I would even say that the single-
issue domain D3 is more complex, especially if the utility functions of D2

are linear. After all, in that case, to describe the utility functions of D2

we only need 33 parameters (the three weights, plus 10 numbers for each
issue Ij to represent the values vji (xj)). On the other hand, to describe the
utility functions in the single-issue domain D3 we need 1,000 parameters:
one for each offer. As we will see later on in Chapter 4, this means that for
many opponent modeling algorithms it is much easier to learn the opponent’s
utility function in the multi-issue domain. In fact, many existing opponent
modeling algorithms would not even work on single-issue domains.

One could therefore argue that if a single-issue domain and a multi-issue
domain each have the same size, then, in general, the single-issue domain
would typically be more complex than the multi-issue domain.

One exception to this rule, however, would be if we assume that all issues
are ordered and that we know, for each issue, the opponent’s preference
ordering over that issue. In that case a single-issue domain would be easier
to handle, because we would have a full preference ordering over all offers
in such a domain.

2.3 Pareto Optimality and Individual Rationality

In this section we discuss two important properties that any agreement
between two agents should ideally satisfy: individual rationality, and Pareto
optimality.

As mentioned before, a rational agent would never accept an offer that
yields a utility value lower than or equal to its reservation value. This
motivates the definition of individual rationality.

Definition 9. In any negotiation domain an offer ω is said to be rational
for agent agi if that agent’s utility for that offer is strictly greater than that
agent’s reservation value:

ui(ω) > rvi

2.3. PARETO OPTIMALITY AND INDIVIDUAL RATIONALITY 43

Furthermore, we say an offer ω is individually rational if it is rational
for all agents:

∀i ∈ {1, 2, . . . , n} : ui(ω) > rvi

You may find this terminology a bit confusing, since individual ratio-
nality actually refers to all agents, but this is an established term in the
literature.

The importance of individual rationality, is that in a bilateral negotiation
only the individually rational offers could ever become an agreement. After
all, if an offer is not individually rational, then at least one of the two agents
would never accept or propose it (unless, of course, the agent is very badly
programmed).

In a multilateral negotiation, on the other hand, this depends on the
details of the protocol. If the protocol prescribes that all agents need to
agree with an offer for it to become an agreement, then again we have that
only individually rational offers can become agreements. However, there are
scenarios and protocols in which it is possible for subsets of agents to make
agreements. In such cases, of course, an agreement only needs to be rational
for that subset of agents.

The set of individually rational offers can be visualized easily in a utility
diagram, since it is the set of all offers that lie above the horizontal line
representing rv2, as well as to the right of the vertical line representing rv1.
See Figure 2.4.

Before we can define the concept of Pareto optimality, we first have to
define the concept of domination. Suppose that we have two offers, ω and
ω′, such that each agent prefers ω over ω′. We then say that ω dominates
ω′, or that ω′ is dominated by ω. We can give a precise definition as follows.

Definition 10. We say that an offer ω dominates another offer ω′ if:

∀i ∈ {1, 2, . . . , n} : ui(ω) ≥ ui(ω
′)

and there is at least one agent for which this inequality is strict:

∃i ∈ {1, 2, . . . , n} : ui(ω) > ui(ω
′)

We say an offer ω′ is dominated by ω, if ω dominates ω′.

In a utility diagram, this can be visualized as follows: first, draw a
vertical line through the point representing ω′, next, draw a horizontal line
through ω′. Now, if ω lies on or above the horizontal line, and also lies on
or to the right of the vertical line, then ω dominates ω′. See Figure 2.5.

44 CHAPTER 2. BASIC NEGOTIATIONS

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

rv2

rv1

Utility of Agent 1

U
ti
li
ty

of
A
g
en
t
2

Figure 2.4: The individually rational offers are those for which their utility
vector lies above the horizontal line representing rv2 and to the right of the
vertical line representing rv1. Here these utility vectors are all drawn with
a circle around them.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ω

ω′

rv2

rv1

Utility of Agent 1

U
ti
li
ty

of
A
ge
n
t
2

Figure 2.5: Example of domination. The offer ω lies to the top-right of ω′

and we therefore say that ω dominates ω′.

2.4. COMPETITIVENESS 45

Clearly, if the agents agree upon an offer ω′ that is dominated by some
other offer ω, then this outcome would not be optimal, since at least one
agent would actually prefer ω as the final agreement and none of the other
agents would have any objection against ω instead of ω′. So, ideally, agents
would only agree upon offers that that are not dominated by any other offer.
Such offers are called Pareto-optimal.

Definition 11. An offer ω is Pareto optimal if it is not dominated by
any other offer.

However, unlike individual rationality, Pareto optimality is hard to guar-
antee in practice, if the agents don’t know each other’s utility functions. So,
many negotiation algorithms still often make deals that are not Pareto op-
timal.

To visualize Pareto optimality, again draw a horizontal line and a vertical
line through a given offer ω. The lines divide the space into for quarters.
If the top-right quarter (including the lines themselves) is empty, then ω is
Pareto optimal. See Figure 2.6.

Definition 12. For any negotiation domain D, its Pareto set Ωp is the set
of all Pareto-optimal offers. The Pareto frontier is the set of all utility
vectors of the Pareto-optimal offers.

Note that the Pareto set is a subset of Ω, while the Pareto frontier is a
subset of Rn. See Figure 2.7 for the visualization of a Pareto frontier.

2.4 Competitiveness

In some negotiation domains it is easier to find good offers that are ac-
ceptable to all agents than in other domains. For example, if the domain
contains a single offer ω∗ that yields the maximum utility to all agents (i.e.
ω∗ = ωmax

1 = ωmax
2), then it is obvious that that specific offer should be

the one that the agents agree upon. After all, no agent would benefit from
switching to any other agreement. The interests of all agents are aligned
and therefore we say the domain has zero competitiveness or opposition (we
will use these two terms interchangeably).

On the other hand, in a split-the-pie domain there is high opposition,
because the interests of the two agents are diametrically opposed. The bet-
ter an offer is for one agent, the worse it is for the other. In fact, we can
construct even more competitive domains where there is no good intermedi-
ate solution and every offer is really bad for at least one agent of the agents.
See Figure 2.8.

46 CHAPTER 2. BASIC NEGOTIATIONS

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ω

rv2

rv1

Utility of Agent 1

U
ti
li
ty

of
A
g
en
t
2

Figure 2.6: The offer ω is Pareto optimal because it is not dominated by any
other offer. We can see this because the area that lies above the horizontal
dashed line and to the right of the vertical dashed line is empty.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

rv2

rv1

Utility of Agent 1

U
ti
li
ty

of
A
g
en
t
2

Figure 2.7: Pareto-frontier. All offers that are Pareto-optimal have been
drawn here with a circle around them.

2.4. COMPETITIVENESS 47

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

rv2

rv1

Utility of Agent 1

U
ti
li
ty

of
A
ge
n
t
2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

rv2

rv1

Utility of Agent 1

U
ti
li
ty

o
f
A
g
en
t
2

Figure 2.8: Left: a domain with low opposition. Right: a domain with high
opposition.

In other words, the ‘competitiveness’ or ‘opposition’ of a domain mea-
sures how easy it is for all agents to receive high utility. Now, it would be
nice to have a formula that allows us to quantify, for any given domain its
competitiveness. It turns out, however, that many different such formulas
have been proposed in the literature, so we will discuss a couple of them.
For simplicity, we will assume the utility functions are normalized. Each
of the expressions we discuss here is based on the idea that we first pick
some ‘ideal’ offer, and then measure the difference between the utility vec-
tor of that ideal offer and the ‘utopian’ utility vector (1, 1, . . . , 1) that assigns
the maximum utility to each agent. The higher this value, the higher the
opposition of the domain.

Perhaps the most commonly used definition of opposition is one based
on the Euclidean distance [50]. That is:

opp(D) := min
ω∈Ω

√√√√ n∑
i=1

(1− ui(ω))2 (2.4)

While this definition may initially seem intüıtive, one could argue that
it is not entirely satisfactory. For example, suppose that the minimum Eu-
clidean distance is attained for some offer with utility vector (0.6, 0.6). Now,
it is easy to see that if we change the domain a bit, by replacing this offer
with a new offer with utility vector (0.6, 0.65), then according to this Eu-
clidean measure, the domain would become less competitive, even though
we have only increased the utility of one of the two agents. Moreover, we
can even slightly decrease the utility of the other agent, to get (0.59, 0.65)

48 CHAPTER 2. BASIC NEGOTIATIONS

and the Euclidean opposition measure would still indicate that this domain
is less competitive than the original one. One could argue that this result is
somewhat contrary to what you might expect from an accurate measure of
opposition.

One alternative definition is the following [1]:

opp(D) := min
ω∈Ω

1− min
i∈{1,2,...,n}

ui(ω) (2.5)

Here, the distance to the ‘utopian’ outcome is defined as the difference be-
tween 1 and the utility obtained by the agent that receives lowest utility.
The advantage of this measure is that to decrease the competitiveness of a
domain, we need to increase the utility of all agents.

Yet another definition [40] also uses the Euclidean distance, but defines
the ‘ideal offer’ as the one that minimizes |u1(ω)− u2(ω)| among all Pareto
optimal offers. That is:

opp(D) :=

√√√√ n∑
i=1

(1− ui(ω∗))2 (2.6)

where:
ω∗ := min

ω∈Ωp
|u1(ω)− u2(ω)| (2.7)

In the end, there is no obvious way to determine which of these measures
is the ‘best’. I would say that this question mainly depends on the purpose
that you have in mind for which you want to measure opposition.

2.5 Simulation Framework

In order to implement negotiation algorithms and perform experiments on
them, we need a framework that allows us to run a simulation of a negoti-
ation between agents. A commonly used framework for this is the NegMas
platform [36].

However, for this book we have implemented a very simple, toy-world
negotiation simulator in Python. It can be downloaded from the web page
of this book:
https://www.iiia.csic.es/~davedejonge/intro_to_nego

It does not rely on any libraries so you don’t need to install anything, ex-
cept of course Python itself, and any development environment that is suit-
able for Python. We will use this simulator for various exercises throughout
this book.

https://www.iiia.csic.es/~davedejonge/intro_to_nego

2.5. SIMULATION FRAMEWORK 49

Exercise 1. Download the python code of the NegoSimulator and run
the file negoSimulator.py. This will run a simulation of a negotiation
between two agents that just make random proposals. Look at the
source code and try to understand how it works.

50 CHAPTER 2. BASIC NEGOTIATIONS

Chapter 3

Negotiation Strategies

We are now finally ready to discuss how we can actually implement a ne-
gotiation algorithm. This is probably the most important chapter of this
book. We will describe several possible strategies and we will see that each
of them has its own advantages and disadvantages.

The goal of this chapter is to discuss how we can develop our own agent,
that will be able to negotiate with arbitrary unknown opponents. We will
here always follow the convention that our agent is denoted as ag1, while its
opponent is denoted as ag2.

It is important to understand that the only goal of our agent is always
to maximize its own utility, so it does not care about other concepts such
as fairness or social welfare, as explained in Section 2.2.3.2, and we assume
the same for the opponent.

There are many kinds of negotiation scenarios that we could consider,
but in this chapter we will always make the following assumptions:

� Negotiations are bilateral (so our agent is negotiating with only one
opponent).

� Negotiations take place according to the alternating offers protocol
(See Section 2.2.2).

� Each of the two agents involved in the negotiation knows its own utility
function and its own reservation value, but neither of them knows the
utility function or reservation value of the other.

� The offer space Ω is finite.
� The agents have a finite deadline T for the negotiations.
� There is no maximum number of negotiation rounds (or equivalently,
N =∞).

� There are no discount factors (or equivalently, the discount factors are
equal to 1).

51

52 CHAPTER 3. NEGOTIATION STRATEGIES

On the other hand, we will not make any assumptions about whether the
negotiation domain is a single-issue or multi-issue domain, nor about the
type of utility functions the agents have (linear or non-linear).

We make these assumptions because they yield the simplest types of
negotiation scenarios that are still interesting enough to allow us to discuss
the most commonly used negotiation strategies. More advanced negotiation
scenarios will be discussed later on in this book.

3.1 The BOA Model

When implementing a negotiation algorithm, it is often useful to think of it
as consisting of three separate components:

� A Bidding strategy: a strategy to determine when our agent will
propose which offer to the opponent.

� An Opponent modeling algorithm: an algorithm that allows our
agent to approximately learn the opponent’s utility function and/or
its bidding strategy.

� An Acceptance strategy: A strategy to determine which proposals
received from the opponent should be accepted by our agent and which
ones should be rejected.

This model is known as the BOA model [6]. A typical BOA agent would be
implemented as follows:

1. Receive an offer ωrec proposed by the opponent.
2. Use the opponent modeling algorithm to update a model of the oppo-

nent’s strategy and utility function, based on the received proposal.
3. Use the bidding strategy, in combination with the model of the oppo-

nent, to determine which counter offer ωnext to propose next.
4. Use the acceptance strategy to determine whether or not to accept the

received offer ωrec. If yes, then accept ωrec, if not, then propose ωnext.

An implementation in pseudo-code is displayed in Algorithm 1. In the fol-
lowing sections we will present more specific strategies, but they all follow
the same structure. One thing that may seem counter-intuitive, is that this
algorithm first decides which offer to propose next, before it decides whether
or not to accept the received offer. This is, because the decision whether or
not the accept the received proposal often depends on which proposal you
are going to make next.

In the following section we will discuss various bidding strategies and
present some example implementations in pseudo-code. These examples will

3.1. THE BOA MODEL 53

Algorithm 1 BOA Agent for the Alternating Offers protocol. Generic im-
plementation of a method that is called every turn and determines whether
the agent should accept the last proposal received from the opponent or
reject it and, in case of rejection, which counter-offer to propose next.

Input:
Ω ▷ The offer space.
u1 ▷ The agent’s own utility function.
rv1 ▷ The agent’s own reservation value.
T ▷ The deadline.
M ▷ A model of the opponent.
t ▷ The current time.
ho1 ▷ The observed negotiation history: a list containing all

proposals that have so far been proposed by both agents,
sorted in chronological order.

ωrec ▷ The offer last proposed by the opponent (if any).
Note that it is also contained in the history h,
but for clarity we also display it here separately.

// OPPONENT MODELING
// First, update the opponent model

1: M← updateOpponentModel(Ω, T,M, t, ωrec)

// BIDDING STRATEGY
// Next, apply a bidding strategy to select the next offer to propose.

2: ωnext ← biddingStrategy(Ω, u1, rv1, T,M, t, ho1)

// ACCEPTANCE STRATEGY
// Then, determine whether or not to accept the opponent’s last
// proposal. We store this decision in a boolean variable acceptOffer .

3: acceptOffer ← acceptanceStrategy(Ω, u1, T,M, t, ωrec, ωnext)

// RETURN SELECTED ACTION
//Finally, return the selected action (accept or propose).

4: if acceptOffer then
5: Return (a, ωrec)
6: else
7: Return (p, ωnext)
8: end if

54 CHAPTER 3. NEGOTIATION STRATEGIES

also include various acceptance strategies, but we will not discuss them yet
because we defer that discussion until Section 3.3. Furthermore, opponent
modeling algorithms will be discussed in Chapter 4.

3.2 Bidding Strategies

In this section we will discuss the various negotiation strategies that have
been studied in the literature. These strategies can be classified into the
following three categories:

1. Time-based strategies.

2. Adaptive strategies.

3. Imitative strategies.

We certainly do not claim that these are the only possible strategies, but
they are the most commonly studied ones. In fact, in their seminal paper [23]
Faratin et al. also proposed a fourth type of strategy, known as a resource-
based strategy, but these seem to have been given considerably less attention
in the literature, so we will not discuss them in this book.

The basic idea behind all three types of strategy above is the same: our
agent starts by proposing an offer that gives the highest possible utility to
itself but, as time passes, our agent will propose offers that yield less and less
utility to itself, which will hopefully make it more likely for the opponent
to accept one of those offers. Every time an agent makes a new proposal
that yields less utility to itself than any of its previous proposals, we say the
agent is making a concession, or that the agent is conceding.

The big question is how to determine how much to concede in every
turn. On the one hand, our agent obviously should not concede too much,
because its aim is to make a deal that gives itself the highest possible utility.
An agent that concedes too much will only make deals that yield very little
utility. But on the other hand, if our agent doesn’t concede enough, there
is the risk that it may not come to any agreement at all, which would often
result in even less utility. Therefore, the key to a strong negotiation strategy
is to make exactly the right trade-off between conceding enough, and not
conceding too much. In the rest of this book we will refer to a strategy that
concedes very little as a hardheaded strategy, while we will refer to a
strategy that concedes very much as a conceding strategy.

3.2. BIDDING STRATEGIES 55

3.2.1 Time-Based Strategies

Time-based strategies are the simplest kind of negotiation strategy. A time-
based strategy makes use of a function λ : R→ R, known as the aspiration
function, which would typically be strictly decreasing. This aspiration
function controls the amount of concession the agent makes as a function
of time. Specifically, the idea is that at any given time t our agent ag1 will
propose an offer ω that concedes as much as possible, under the constraint
that his utility value u1(ω) must remain greater than, or equal to λ(t).

Time-based agents can be either hardheaded or conceding, depending
on the shape of the aspiration function. The faster λ decreases, the more
conceding the agent will be. We will discuss this in more detail below.

3.2.1.1 Choosing the Next Offer to Propose

Given an aspiration function λ, we need to implement a precise rule how to
choose the next offer to propose ωnext based on this function. One example
would be to do it according to the following expression:

ωnext = argmax
ω∈Ω

{ û2(ω) | u1(ω) ≥ λ(t) ∧ ω ̸∈ Ωprop
t } (3.1)

where û2 is an estimation that our agent ag1 makes of the opponent’s utility
function u2, by means of its opponent modeling algorithm. The details
about how such opponent modeling techniques work will be discussed in
Chapter 4. For now, we will just see it as a ‘black box’ that magically gives
us an approximation of the opponent’s utility function. Furthermore, Ωprop

t

is the set off all offers that have already been proposed by ag1 before time t.

Ωprop
t := {ω ∈ Ω | ∃t′ ∈ [0, t] : (1, p, ω, t′) ∈ ho1} (3.2)

In Equation (3.1) we can clearly see how λ(t) controls the trade-off between
demanding a high utility for yourself and conceding more utility to the op-
ponent. On the one hand our agent is maximizing the opponent’s estimated
utility û2, but on the other hand this is restricted by the constraint that our
agent should not propose any offer that yield less utility than λ(t).

The constraint ω ̸∈ Ωprop
t ensures that, if the best candidate has already

been proposed, then instead of repeating that proposal, our agent will pro-
pose the second best candidate. After all, the opponent modeling algorithm
may not be accurate, so even if û2(ω) is greater than û2(ω

′) it may happen
that the opponent actually prefers ω′, so, if it has the chance, our agent
should also try to propose ω′.

56 CHAPTER 3. NEGOTIATION STRATEGIES

Of course, it may happen that there is no offer at all that satisfies the
criteria, because all offers for which u1(ω) ≥ λ(t) holds have already been
proposed. In that case our agent can simply repeat the same proposal as
in the last turn, or propose an arbitrary one that it has already proposed
before.

The main disadvantage of Eq. (3.1), however, is that it depends on having
an accurate opponent modeling algorithm. Therefore, alternatively, one can
instead use the following expression.

ωnext = argmin
ω∈Ω

{ u1(ω) | u1(ω) ≥ λ(t) ∧ ω ̸∈ Ωprop
t } (3.3)

That is, it picks the offer with the lowest utility value that is still greater
than or equal to λ(t). There are two scenarios in which this alternative
approach would make sense:

1. In domains where the utility functions of the two agents are strongly
negatively correlated (that is, domains in which any offer that yields
high utility to our agent, yields low utility to the opponent, and vice
versa).

2. In domains with a very small offer space.

An example of the first scenario is the case where a buyer and a seller
negotiate the price of a car, or any other split-the-pie domain. In such
cases, finding the offer that yields the highest utility to the opponent is
(approximately) equivalent to finding the offer that yields the lowest utility
to our agent. So, Eq. (3.3) would yield approximately the same proposals as
Eq. (3.1), but without using any opponent modeling algorithm. Of course,
the problem is that we have to know that the utility functions are strongly
correlated, so we need to have at least some prior knowledge about the
opponent’s utility function.

In the second scenario Eq. (3.3) may work, because there is enough time
for our agent to propose all the offers, one by one. For example, if it takes
about 100 milliseconds for an agent to make a proposal, and the deadline is
set to 1 minute, then there is time to propose 6,000 different offers. So, if
the offer space contains less than 6,000 different offers, then there is enough
time for the two agents to propose all offers. In that case this approach may
work even when there is no strong correlation between the utility functions,
because it simply doesn’t matter if our agent sometimes proposes offers
that are bad for the opponent. If there is a better offer available, then our
agent will simply propose that offer in any of the following turns. On the
other hand, if the domain is too large (or the deadline too short), then this

3.2. BIDDING STRATEGIES 57

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

γ = 10

γ = 1

γ = 1/100

Time

A
sp
ir
at
io
n
L
ev
el

Figure 3.1: Aspiration functions with α = 1, β = 0, T = 1, and several
different values for γ.

approach may fail because our agent cannot propose all offers, and therefore
risks failing to propose those offers that are acceptable to the opponent.

3.2.1.2 Choosing the Aspiration Function

The aspiration function can be any monotonically decreasing function, but
a good example would be the following:

λ(t) = (α− β) · 1− γ1−
t
T

1− γ
+ β (3.4)

where T is the deadline of the negotiations, and α, β and γ are three param-
eters that can be freely chosen, but with α > β and γ > 0. We have plotted
this expression in Figure 3.1 for various different values of γ. An example
implementation of a time-based agent is displayed in Algorithm 2.

Let us now discuss how to interpret the parameters α, β, and γ, and how
to choose their values. For this, first note that if t = 0 then we have λ(0) = α.
Therefore, α represents the minimum utility our agent will demand for itself
at the start of the negotiations. Similarly, if t = T then we have λ(t) = β.
This means that β represents the utility our agent will demand for itself at
the end of the negotiations, when the deadline is near. We will call this the
target value. A high target value represents a hardheaded strategy, while

58 CHAPTER 3. NEGOTIATION STRATEGIES

Algorithm 2 Time-based bidding Strategy.

Parameters: α, β, γ
Input:
Ω ▷ The offer space.
u1 ▷ The agent’s own utility function.
T ▷ The deadline.
t ▷ The current time.
ho1 ▷ The observed negotiation history.
ωrec ▷ The offer last proposed by the opponent (if any).

//OPPONENT MODELING
1: M← updateOpponentModel(Ω, T,M, t, ωrec)
2: û2 ← getEstimatedOpponentUtility(M)

// BIDDING STRATEGY
// Calculate the aspiration level.

3: λ← (α− β) · 1−γ1−t/T

1−γ + β
// Obtain the set of offers we have already proposed.

4: Ωprop ← getOffersProposedByUs(ho
1)

// Find the next offer to propose.
5: ωnext ← argmaxω∈Ω{û2(ω) | u1(ω) ≥ λ ∧ ω ̸∈ Ωprop}

// ACCEPTANCE STRATEGY
// Get the last proposal received from the opponent, and accept it if
// it yields more utility to us than our aspiration level.

6: acceptOffer ← u(ωrec) ≥ λ

// RETURN SELECTED ACTION
7: if acceptOffer then
8: Return (a, ωrec) //accept the received offer
9: else

10: Return (p, ωnext) //propose a new offer
11: end if

3.2. BIDDING STRATEGIES 59

a lower target value represents a conceding strategy. Finally, the parameter
γ determines how quickly the agent concedes from α to β.

Typically, the value chosen for α is exactly the utility of the offer that
the agent prefers most: α = u1(ω

max
1). After all, a typical negotiator would

start with the proposal that yields the highest utility for itself. While it is
certainly possible to start with a lower offer, there does not seem to be much
reason to do so. So, the other two parameters are more important.

Regarding the value for β, it should be obvious that it should always be
greater than the agent’s reservation value, because our agent should never
propose any offer that yields less utility than that. One common choice is
to set β exactly equal to the reservation value. The reasoning behind this
is that making a deal that is just slightly above the reservation value is
always better than making no deal at all, and thus one should be willing to
concede all the way to the reservation value as the deadline gets close. While
this reasoning may make sense if we focus only on one single negotiation in
isolation, this choice is actually not optimal at all if we consider that our
agent may be involved in many different negotiations and that our opponents
may remember our agent’s behavior from previous encounters and may be
learning how to negotiate optimally against our agent.

The problem is this: if our agent always chooses β = rv1, then its
opponents may anticipate this. That is, the opponents know that our agent
will be conceding all the way to its reservation value and therefore they can
exploit it by simply not conceding at all, or very little, and waiting until the
very last moment before accepting any of our agent’s proposals.

For example, consider a split-the-pie domain where the maximum utility
is 1, and our reservation value is 0. If our agent plays a strategy with β = 0
and the opponent chooses a strategy with β = 0.99 then all negotiations
would end with an agreement that gives our agent a utility of 0.01 and the
opponent 0.99 (assuming such an offer exists).

It is therefore often wiser to choose a higher target value (i.e. choose a
more hardheaded strategy). This may sometimes cause the negotiations to
fail, but in the long run that may actually be a good thing, because it sends
a signal to our opponents that they will need to make concessions if they
want to make an agreement with our agent.

On the other hand, choosing the target value too high will not work
well either. It could work against a very conceding time-based agent (i.e.
one with a low target value), but it will fail to come to an agreement if
the opponent also chooses a high target value. For example, if both agents
choose a target value of 0.99 (when the maximum utility is 1), then they
can only come to an agreement if there exists an offer that yields a utility

60 CHAPTER 3. NEGOTIATION STRATEGIES

of 0.99 to both agents. It is rare to encounter a negotiation domain where
this is the case.

Figure 3.2 visualizes the evolution of the aspiration levels of two time-
based agents during a negotiation. The aspiration level of ag1 is indicated
with a vertical blue line that over time moves from the right to the left,
while the aspiration level of ag2 is indicated with a horizontal blue line that
over time moves from the top to the bottom. Note that in this example,
ag1 follows a conceding strategy, while ag2 follows a hardheaded strategy.
We see that they end up with an agreement that yields more utility to the
hardheaded agent than to the conceding agent.

The parameter γ is the concession parameter. It determines how fast
our agent will concede towards its target value. If γ is very small (e.g. 0.01)
our agent will initially concede very slowly, as we can see in Figure 3.1, and
only start making large concessions towards the end of the negotiations. On
the other hand, if γ is very large, our agent will immediately start making
large concessions. Finally, a value of γ = 1 represents an agent that concedes
linearly.1

In order to exploit the opponent as much as possible, our agent should
make sure it concedes slower than the opponent. This suggest that we would
always want a low value of γ. However, if we choose γ too low, then our agent
may start conceding so late, that by the time it finally makes a substantial
concession there is no more time for the opponent to accept it.

For example, suppose we choose an intermediate target value of β = 0.5,
but our concession parameter is so low, that at 10 milliseconds before the
deadline the aspiration value is still at λ(t) = 0.90. While in theory the
aspiration level will continue to decrease to 0.5 in the last 10 milliseconds,
this time might not be enough for our agent to actually exchange more
proposals and come to an agreement. After all, every time our agent makes
a proposal, it will take a small amount of time for that message to arrive at
the opponent and then the opponent will still need some time to process it,
and to send an ‘accept’ message back. This means that the optimal value of
γ largely depends on the speed at which the agents can send messages and
at which they are able to process them. In other words, it largely depends
on practical considerations related to the infrastructure on which the agents
are implemented.

Furthermore, if we choose γ very low, then our agent’s aspiration level
will remain very high for a long time, which means that for a long time there

1Technically, the expression in Eq. 3.4 is not defined for γ = 1, but it can be shown
that limγ→1 f(t) = (α− β) · (1− t/T) + β, which is a linear function of t.

3.2. BIDDING STRATEGIES 61

might not be any agreement possible. Then, when the deadline gets near,
our agent will suddenly concede very fast towards its target value, meaning
that the only possible agreement would be one close to the target value. But
in that way we might miss out on any opportunities to obtain a better deal.
Our agent would only be able to make a deal near its target value, or no deal
at all. By choosing a somewhat higher value of γ our agent has the time to
propose several intermediate offers that yield utilities of, say, 0.8, 0.7 and
0.6, which could be accepted by the opponent before our agent reaches its
target level.

Another reason why a low value of γ might not be optimal is when
there are discount factors (see Section 2.2.5), because in that case we would
prefer our agent to come to an agreement as quickly as possible. Yet another
example could be in the case that the opponent is participating in multiple
negotiations in parallel. For example, when a seller has one item to sell, and
is negotiating with multiple potential buyers at the same time. In that case
our agent, as a buyer, would also want to come to an agreement as soon as
possible, before the seller sells the item to one of the other buyers.

Time-based strategies with a low value of γ, but with β = rv1 are also
known as Boulware strategies.

Finally, it should be noted that Eq. (3.4) is sometimes adapted so that
the agent reaches its target level already a bit before the deadline, at a time
T ′ slightly less than T , which we will call the target time. After the target
time, the aspiration level will just remain constant:

λ(t) =

{
(α− β) · 1−γ1−t/T ′

1−γ + β if t ∈ [0, T ′]

β if t ∈ [T ′, T]
(3.5)

This is to ensure that our agent will indeed concede all the way to its target
level, but not any further. Furthermore, it ensures that after ag1 proposes
its ultimate offer (with utility equal to or very close to β) at time T ′ so that
there is enough time left for the opponent to accept that offer.

62 CHAPTER 3. NEGOTIATION STRATEGIES

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

rv2

rv1

λ2(t)

λ1(t)

Utility of Agent 1

U
ti
li
ty

o
f
A
g
en
t
2

(a) Aspiration levels at t/T = 0.2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

rv2

rv1

λ2(t)

λ1(t)

Utility of Agent 1

U
ti
li
ty

o
f
A
ge
n
t
2

(b) Aspiration levels at t/T = 0.4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

rv2

rv1

λ2(t)

λ1(t)

Utility of Agent 1

U
ti
li
ty

of
A
ge
n
t
2

(c) Aspiration levels at t/T = 0.6

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

rv2

rv1

λ2(t)

λ1(t)

Utility of Agent 1

U
ti
li
ty

of
A
ge
n
t
2

(d) Aspiration levels at t/T = 0.8

Figure 3.2: Negotiation between a conceding agent (ag1) and a hardheaded
agent (ag2). Their aspiration levels are indicated with a vertical blue line
and a horizontal blue line respectively. We see that the aspiration level
of the conceding agent drops much further than the aspiration level of the
hardheaded agent. The negotiations continue until they reach a point at
which there is an offer that is acceptable to both agents. That is, when
there is an offer for which its utility vector lies above the horizontal blue
line, as well as to the right of the vertical blue line. In this example that
happens at t/T = 0.8. Note that the agreement yields more utility to the
hardheaded agent than to the conceding agent.

3.2. BIDDING STRATEGIES 63

Exercise 2. Time-based Agent. Use the NegoSimulator frame-
work (Section 2.5) to implement an agent that applies a time-based
negotiation strategy. Note that the framework already comes with
the source code of a RandomAgent, so you can just copy its code and
adapt it according to Algorithm 2.
Since we haven’t discussed opponent modeling algorithms yet, you
can use Equation (3.3) to determine the next offer, which doesn’t
require opponent modeling.
Alternatively, you can use the DummyOpponentUtilityModel that
comes with the framework. This is a fake opponent model that takes
the opponent’s real utility function as its input and returns a random
approximation of that function.
Run several negotiations between time-based agents and experiment
with different parameter settings. Which values for the parameters
α, β and γ give the best results?

3.2.2 Adaptive Strategies

We will now describe another type of strategy, known as an adaptive strat-
egy. Adaptive strategies have probably received the most attention in the
literature, and most agents that were successful in the various ANAC com-
petition have been of this type.

In order to explain this type of strategy, let us first suppose that our
opponent ag2 plays a time-based strategy with target value β2. This means
that, if we wait long enough, the opponent will be willing to propose or
accept any offer ω for which u2(ω) ≥ β2. Now, let ω∗ denote the offer that
maximizes ag1’s own utility u1 among those offers. That is:

ω∗ := argmax
ω∈Ω

{u1(ω) | u2(ω) ≥ β2} (3.6)

This means that ag1 cannot possibly receive any utility higher than u1(ω
∗).

After all, by Eq. (3.6) we know that for any offer ω that yields a higher utility
to ag1, we would have u2(ω) < β2, and agent ag2 would never propose or
accept any such offer, by definition of β2. On the other hand, however, it also
means that if we get close enough to the deadline, then ag2 will be willing to
accept the offer ω∗ and therefore, ideally, ag1 should not propose or accept
any offers that yield less utility than u1(ω

∗). So, against this opponent, a
theoretically optimal strategy for ag1 would be one that concedes no further
than u1(ω

∗). For example, a time-based strategy with target value β1 =
u1(ω

∗).

64 CHAPTER 3. NEGOTIATION STRATEGIES

Unfortunately, however, there are two problems with this idea. Firstly,
ag1 typically does not know the target value β2 of its opponent, and secondly
ag1 typically also does not know the utility function u2 of its opponent.
Therefore, ag1 cannot directly determine the ideal offer ω∗.

Instead, however, ag1 can try to infer it, using opponent modeling algo-
rithms (which we will discuss in Chapter 4). The idea is then simple: every
time our agent receives a proposal from the opponent, our agent uses it to
update the opponent model to obtain a more accurate approximation of u2
and β2, which it can then use to obtain a better prediction of ω∗. Then,
our agent sets its target value equal to u1(ω

∗) (unless it is below our agent’s
reservation value, of course), and finally it uses this to determine our aspi-
ration level at that moment, according to some formula such as Eq. (3.4).

This approach is called an adaptive strategy, because it tries to adapt to
its opponent. Just like a time-based strategy it applies an aspiration level
that decreases over time, but the difference is that the target value is not
constant. Instead, it is updated every time we gain more information about
the opponent’s strategy and utility function.

In theory, if we are 100% sure that our opponent is using a time-based
strategy, and we have an opponent modeling algorithm that can predict ω∗

with 100% accuracy, then an adaptive strategy is the theoretically optimal
strategy against that opponent (in game theory terminology: it is a best
response, see Chapter 5). After all, it concedes exactly enough to ensure a
deal, but no further than that, so it always achieves the maximum amount
of utility that can possibly be achieved against that opponent.

Of course, in practice we don’t really have a 100% accurate opponent
modeling algorithm. But besides that, another problem with the reasoning
above is that it assumes the opponent does not know anything about our
agent. The problem, is that if the opponent can somehow anticipate that
we are using a purely adaptive strategy, then he may be able to exploit
this knowledge by choosing a very hardheaded strategy. For example, in
a split-the-pie domain where both agents have a reservation value of 0, he
could choose a target value of β = 0.99. If we then apply a purely adaptive
strategy, then our agent would always come to an agreement for which it
gets no more than 0.01 utility.

Therefore, in practice, many adaptive strategies have a ‘minimum target’
βmin and they make sure that their target β is never lower than that. That
is:

β = max{ u1(ω
∗) , βmin }

This means that such strategies are more of a hybrid between a time-based

3.2. BIDDING STRATEGIES 65

strategy and a purely adaptive strategy.
Furthermore, since our opponent modeling will probably not be 100%

accurate, we may need to add another term ϵ to our target utility u1(ω
∗),

where ϵ > 0 and where ϵ decreases as we gain more and more knowledge
about the opponent from the offers it proposes to us. So we would get:

β = max{ u1(ω
∗) + ϵ , βmin }

This is to prevent that an inaccurate estimation at the beginning of the
negotiations causes our agent to concede too much.

Yet another problem with adaptive strategies, is that they kind of assume
the opponent is following a purely time-based strategy, which allows the
adaptive strategy to predict the optimal target value. This, however, gets
much more complicated if the opponent is also playing an adaptive strategy.
In that case we have two agents that are each trying to adapt to the other.

A basic implementation of an adaptive strategy is displayed in Algo-
rithm 3.

Exercise 3. Adaptive Agent. Use the NegoSimulator framework
to implement an agent that applies an adaptive negotiation strategy.
Note that the framework already comes with the source code of a
RandomAgent, so you can just copy its code and adapt it according
to Algorithm 3.
Since we haven’t discussed opponent modeling algorithms yet, you
can again use the DummyOpponentUtilityModel that comes with the
framework (See Exercise 2) to estimate the opponent’s utility func-
tion.
Furthermore, to estimate the optimal target value β∗ you can use the
SimpleOpponentStrategyModel that also comes with the NegoSimu-
lator framework. This class implements a very naive linear extrapo-
lation algorithm to predict how far the opponent will concede.
Experiment with several parameter settings and run a number of ne-
gotiations between your adaptive agent and your time-based agent(s)
from Exercise 2.

3.2.3 Imitative Strategies

Above, we have seen that if we know the opponent plays a time-based strat-
egy, then the best response for our agent would be to play an adaptive
strategy. On the other hand, if the opponent is playing an adaptive strategy,

66 CHAPTER 3. NEGOTIATION STRATEGIES

Algorithm 3 Adaptive Strategy.

Parameters: α, βmin, γ
Input:
Ω ▷ The offer space.
u1 ▷ The agent’s own utility function.
rv1 ▷ The agent’s own reservation value.
T ▷ The deadline.
M ▷ A model of the opponent.
t ▷ The current time.
ho1 ▷ The observed negotiation history.
ωrec ▷ The offer last proposed by the opponent (if any).

//OPPONENT MODELING
//Update the opponent model.

1: M← updateOpponentModel(Ω, T,M, t, ωrec)
2: û2 ← getEstimatedOpponentUtility(M)

//Use the opponent model to estimate the optimal target value.
β̂∗ ← estimateOptimalTarget(M)

//BIDDING STRATEGY
//Calculate the aspiration value

3: β ← max{β̂∗ , βmin}
4: λ← (α− β) · 1−γ1−t/T

1−γ + β
// Obtain the set of offers we have already proposed.

5: Ωprop ← getOffersProposedByUs(ho
1)

// Find the next offer to propose.
6: ωnext ← argmaxω∈Ω{û2(ω) | u1(ω) ≥ λ ∧ ω ̸∈ Ωprop}

// ACCEPTANCE STRATEGY
// Get the last proposal received from the opponent, and accept it if
// it yields more utility to us than our aspiration level.

7: acceptOffer ← u(ωrec) ≥ λ

// RETURN SELECTED ACTION
8: if acceptOffer then
9: Return (a, ωrec)

10: else
11: Return (p, ωnext)
12: end if

3.2. BIDDING STRATEGIES 67

then the best choice for our agent would be to play a hardheaded time-based
strategy which can exploit the opponent’s adaptiveness. Now, the question
is how to choose between these two strategies when we don’t know what
strategy our opponent will choose.

If one agent plays a hardheaded time-based strategy and the other plays
an adaptive strategy, then the time-based agent would typically receive a
higher utility than the adaptive agent. Therefore, one might be inclined
to argue that choosing a hardheaded time-based strategy is better. But
the problem is that the opponent could follow exactly the same reasoning,
and therefore choose a hardheaded strategy as well. But then we end up
with two agents each playing a hardheaded strategy, and in that case it is
unlikely that the two agents will come to an agreement, since neither of the
two would be willing to make any considerable concessions.

For this reason, some might reason that it is better to play an adaptive
strategy. But then again, the opponent might reason in the same way and
also choose an adaptive strategy. In that case we would miss out on the
opportunity of exploiting him. Furthermore, if we always choose an adaptive
strategy, then that could be exploited by the opponent by always choosing
a hardheaded strategy. In other words, choosing between a hardheaded
strategy and an adaptive strategy is a bit of a chicken-and-egg problem.
The problem is that each of these strategies work well against the other, but
neither of them is optimal when the opponent picks the same strategy.

We have seen that one way out would be to choose a hybrid approach
that applies an adaptive strategy with a minimum target βmin, but then
we still need to answer the question how to choose the optimal value for
βmin. Another approach would be to flip a coin and decide between the two
strategies randomly. We will discuss this option in more depth in Chapter 5.

In this section, however, we will discuss an entirely different type of strat-
egy that is designed specifically to play well against itself. Such strategies
are known as imitative strategies [23]. Rather than trying to adapt to
the opponent (play hardheaded when the opponent plays conceding and vice
versa), imitative agents instead try to imitate the opponent. That is, when
the opponent is hardheaded then play hardheaded as well, and when the
opponent is conceding, play conceding as well. The rationale behind this, is
that if the opponent plays too hardheaded, then our agent can ‘punish’ it
by also playing hardheaded, and when the opponent plays conceding, then
our agent rewards the opponent by playing conceding as well.

Of course, this is all based on the assumption that the opponent does
not play a rigid time-based strategy, but rather observes our agent’s actions
and is able to adapt itself to our agent’s strategy.

68 CHAPTER 3. NEGOTIATION STRATEGIES

We will discuss two kinds of imitative strategies, namely the Classic
Tit-for-Tat strategy and the MiCRO strategy.

3.2.3.1 Classic Tit-for-Tat

In game theory, Tit-for-That (TFT) strategies are strategies in which a
player imitates the moves of the other player. This strategy has been proven
especially useful in the iterated prisoner’s dilemma [2].

In the context of negotiation, this would mean that whenever our oppo-
nent makes a large concession, our agent replies to this by also making a
large concession, and whenever our opponent makes a small concession (or
no concession at all), then our agent replies with a small concession as well
(or no concession at all).

Before we continue, recall that Ωprop
t denotes the set of offers that have

been proposed by our agent ag1 up until time t (see Eq.(3.2)). Similarly, we
define Ωrec

t to be the set of offers that have been received by our agent ag1
up until time t. In other words, it is set of offers that have been proposed
by the opponent ag2 up until time t. Formally:

Ωrec
t := {ω ∈ Ω | ∃t′ ∈ [0, t] : (2, p, ω, t′) ∈ ho1} (3.7)

Now, in order to give a concrete implementation of a classic tit-for-
tat negotiation strategy, we need a function con1 that, given Ωprop

t returns
a value con1(Ω

prop
t) ∈ R that measures how much agent ag1 has so far

conceded. Furthermore, we need a function con2 that, given Ωrec
t returns a

value con2(Ω
rec
t) ∈ R that measures the amount of concession made by ag2.

con1, con2 : 2
Ω → R

In general, for any agent, when we say it makes a large ‘concession’, this
can be interpreted in two ways: it can mean that it makes a proposal with
high utility for the opponent, or it can mean that it makes a proposal with
low utility for itself. In a single-issue negotiation where the agents’ interests
are strictly opposing, such as the bargaining over the price of a second-hand
car, we don’t have to worry about this distinction, because any concession
of the first type is automatically also one of the second type and vice versa.

However, in more complex negotiation scenarios, where not every offer
is Pareto-optimal, and where the agents do not know each others’ utility
function, these two concepts are different.

This means that for con1 there are two obvious choices. Namely, we could
define it in terms of our agent’s own utility, or in terms of our opponent’s

3.2. BIDDING STRATEGIES 69

(estimated) utility:

con1(Ω
prop
t) := max {u1(ωmax

1)− u1(ω) | ω ∈ Ωprop
t } (3.8)

or:

con1(Ω
prop
t) := max {û2(ω)− û2(ω

min
2) | ω ∈ Ωprop

t } (3.9)

where û2 is an estimation of the opponent’s utility function u2, made by
an opponent modeling algorithm and where ωmax

1 and ωmin
2 are defined by

Equations (2.1) and (2.2).

In the first case, our ‘concession’ corresponds to the lowest amount of
utility our agent has so far asked for itself, while in the second case it corre-
sponds to the highest amount of utility it has so far offered to the opponent.

Similarly, we can measure the opponent’s concession using either our
agent’s own utility function, or the opponent’s estimated utility function:

con2(Ω
rec
t) := max {u1(ω)− u1(ω

min
1) | ω ∈ Ωrec

t } (3.10)

or:

con2(Ω
rec
t) := max {û2(ωmax

2)− û2(ω) | ω ∈ Ωrec
t } (3.11)

Here, in the first case, the opponent’s ‘concession’ corresponds to the highest
amount of utility the opponent has so far offered to our agent, while in the
second case it corresponds to the lowest amount of utility the opponent has
so far asked for itself.

Note that here, con2 is a function used by our agent ag1 to measure the
opponent’s concession. In other words, it exists in the ‘mind’ of our agent
ag1 and the opponent itself may actually use an entirely different function
to measure its own concession (if it even uses a Tit-for-Tat strategy at all).

Whenever it is our agent’s turn, its goal is to propose an offer ωnext

such that the total amount of concession that our agent has made so far
remains slightly higher than our opponent’s. We therefore define, for any
offer ω ∈ Ω, its concession gain:

∆cont(ω) := con1(Ω
prop
t ∪ {ω}) − con2(Ω

rec
t)

which allows us to quantify, for any offer ω, the difference between our
agent’s concession after proposing ω and the concession made by the oppo-
nent.

Finally, the Tit-for-Tat strategy chooses our agent’s next offer to propose
ωnext by selecting it from a set of possible offers that satisfy some criterion

70 CHAPTER 3. NEGOTIATION STRATEGIES

regarding to the concession gain. Again, there is no unique way to do this,
so we provide two examples:

ωnext = argmax
ω

{ u1(ω) | ∆cont(ω) > θmin ∧ u1(ω) > rv1} (3.12)

or:

ωnext = argmax
ω

{ û2(ω) | ∆cont(ω) ∈ (θmin, θmax) ∧ u1(ω) > rv1}(3.13)

where θmin and θmax are a minimum and a maximum required concession
gain, respectively. In the first case our agent would select the offer that
maximizes its own utility, under the constraint that it should also concede
enough to the opponent. In the second case, our agent would select an offer
that maximizes the opponent’s estimated utility, but that requires we also
limit ourselves to a maximum concession gain, to prevent our agent from
conceding too much.

In each of these expressions, θmin can be equal to 0, but ∆cont(ω) must
remain strictly greater than 0. This is, because otherwise if it happens that
both agents have made exactly the same amount of concession, then neither
of them will be willing to concede more, and they get stuck in a deadlock (if
they both use the same strategy). Therefore, each of the two agents should
always strive to concede slightly more than the other.

We have now seen that for a concrete implementation of Tit-for-Tat we
need to make 3 choices: an expression for con1, an expression for con2, and
a method to choose ωnext (e.g. Eq. (3.12) or Eq. (3.13)).

At first sight, we might be tempted to choose the expressions that only
depend on our agent’s own utility function (i.e. Eqs. (3.8) , (3.10) and
(3.12)), so that we don’t have to rely on any opponent modeling algorithms.
However, it turns out that this doesn’t work very well. The problem is
that in that case, if both agents make sufficiently small concessions in each
turn, then the final outcome would always be an offer that satisfies u1 ≈
1
2u1(ω

max
1) + 1

2u1(ω
min
1). This can be seen easily as follows. Suppose for

simplicity that we have a normalized utility function (i.e. u1(ω
min
1) = 0 and

u1(ω
max
1) = 1). Now, if the opponent ag2 makes an offer that yields a utility

of 0.1 to our agent, then our agent ag1 would reply with an offer that yields
a utility of 1-0.1=0.9 to itself. Next, if ag2 makes a proposal with utility of,
say, 0.3 for ag1, then ag1 replies with an offer with utility 1-0.3=0.7. Then,
if ag2 proposes an offer with utility 0.35, our agent ag1 will reply with an
offer that yields 1-0.35=0.65, next, if ag2 proposes an offer with utility 0.55
then ag2 replies with an offer that yields 1-0.55 = 0.45. It is easy to see that,
no matter which offers the opponent proposes, this always either converges

3.2. BIDDING STRATEGIES 71

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ω∗

u1(ω) = 0.5

rv2

rv1

Utility of Agent 1

U
ti
li
ty

of
A
g
en
t
2

Figure 3.3: An example of a domain with low opposition. Here, the outcome
with u1(ω) = 0.5 is highly unfair for ag1, since the opponent would receive
u2(ω) = 0.87 for that same offer. Especially, since there exists a much fairer
offer, here indicated as ω∗, for which both agents would receive 0.7.

to an agreement with utility 0.5 for ag1, or the two agents’ proposals don’t
converge at all, which means there will be no agreement.

Now, it happens that in many negotiation domains, if an offer yields
0.5 to one agent, then it yields much more utility to the other agent. This
happens specifically in domains with low opposition, where there exist offers
for which both agents receive a normalized utility greater than 0.5. This is
illustrated in Figure 3.3. In other words, our agent would receive much less
utility than what it could potentially achieve with a better algorithm.

Furthermore, if we already know that that this algorithm can only make
agreements with a utility value of 0.5 for our agent, then we could just as
well play a time-based strategy with target value of β = 0.5. This would
at least give our agent the possibility of reaching agreements with higher
utility.

So, what if we choose one of the other options? Well, if we choose
the opponent’s estimated utility û2 to calculate our own concession con1 as
well as our opponent’s concession con2, then we end up with essentially the
same problem. In that case (assuming we have accurate opponent modeling
algorithms), the only possible agreement the agents could make, would be
one with u2(ω) ≈ 0.5. While this may seem good, because such a solution

72 CHAPTER 3. NEGOTIATION STRATEGIES

would typically yield high utility for our own agent, the problem is that it
would therefore be also less likely that the opponent would be willing to
accept such a deal.

A better idea seems to be to use our own utility to measure our own
concession and the opponent’s utility to measure the opponent’s concession,
or vice versa. In either of these two cases the proposals would converge to
some deal ω with u1(ω) ≈ u2(ω), which would typically be better.

The problem with that, however, is that its success depends on the ac-
curacy of our opponent modeling algorithms. If we cannot estimate u2
accurately, then our agent could be making concessions that are too large,
yielding suboptimal agreements, or it could be making concessions that are
too small, preventing the agents from coming to an agreement at all.

An alternative approach to reach good outcomes using TFT, is to use
relative concessions, instead of absolute ones [8]. By this we mean that
we first pick some ideal outcome ω∗, such as the maximum social welfare
solution, of the Nash bargaining solution (see Section 5.7) and then we
measure concession relative to that ideal outcome:

con1(Ω
prop
t) = max { u1(ω

max
1)− u1(ω)

u1(ωmax
1)− u1(ω∗)

| ω ∈ Ωprop
t } (3.14)

con2(Ω
rec
t) = max { u1(ω)− u1(ω

min
1)

u1(ω∗)− u1(ωmin
1)

| ω ∈ Ωrec
t } (3.15)

Note that this does require you to know which outcome ω∗ would be ideal,
which would still depend on the opponent’s utility function. However, it
requires much less knowledge about u2 than if we used Eqs. (3.9) and (3.11).

It may also be worth mentioning that in the paper that originally pro-
posed the TFT negotiation strategy [23], the authors proposed a variant in
which the agents’ concessions were calculated only in terms of the the last
few proposals by each agent, rather than all their proposals up to time t.

As explained before, the main idea of Tit-for-Tat is that it works well
against itself. However, if the opponent uses a hardheaded time-based strat-
egy, then Tit-for-Tat is likely to fail, because neither of the two agents will be
making big concessions. If the opponent applies an adaptive strategy, or a
conceding time-based strategy, Tit-for-Tat will likely come to an agreement,
but it will not be able to exploit the opponent as much as a hardheaded
strategy could have done.

Furthermore, even if we have a good opponent strategy, and the oppo-
nent is indeed using TFT as well, then the success of our agent also heavily
relies on the accuracy of the opponent’s opponent modeling algorithms (i.e.

3.2. BIDDING STRATEGIES 73

the algorithm used by our opponent to estimate our utility function). After
all, the opponent might intend to make an offer that yields a lot of util-
ity to our agent, but due to an inaccurate opponent model he might end
up proposing one that actually yields very low utility to our agent, which
would then respond with a counter-proposal that yields very low utility to
the opponent. This would prevent them to reach an agreement, even though
both agents have the intention to make large concessions.

Exercise 4. Tit-for-Tat Agent. Implement an agent that applies
one of the various Tit-for-Tat strategies explained in this section.
Since we haven’t discussed opponent modeling algorithms yet, you can
use the DummyOpponentUtilityModel that comes with the NegoSim-
ulator framework (See Exercise 2).
Let your agent negotiate against the RandomAgent or against one of
your agents from Exercises 2 and 3, or against a copy of itself.

3.2.3.2 The MiCRO Strategy

We have seen above, that classic TFT strategies depend heavily on the qual-
ity of the opponent modeling algorithms of both agents. However, recently
a new kind of TFT strategy has been proposed based on the idea that our
agent does not know anything about the opponent’s utility function at all
and moreover, that the opponent also does not know anything about our
agent’s utility function [15]. This strategy was called MiCRO, which stands
for Minimal Concession in Reply to new Offers. Despite its simplicity and
the fact that it does not require any opponent modeling at all, it has shown
some remarkably good results.

MiCRO works as follows. Before the negotiations begin, our agent ag1
creates a list (ω1, ω2, . . . , ωK) containing all offers in the domain, sorted in
order of decreasing utility for itself. That is, u1(ω1) ≥ u1(ω2) ≥ · · · ≥
u1(ωK). Then, when the negotiations start, our agent will first propose the
offer with highest utility for itself. That is, ω1, which is the first offer on its
list. Then, in the following rounds, every time the opponent makes a new
proposal, our agent will respond by proposing the next offer on its list. So,
it will first propose ω2, then ω3, then ω4, etcetera. However, whenever the
opponent ag2 proposes an offer that ag2 has already proposed before, ag1
will reply by also repeating an earlier proposal.

More precisely, whenever it is ag1’s turn to make a proposal, it counts
how many different offers it has so far received from the opponent (we denote

74 CHAPTER 3. NEGOTIATION STRATEGIES

Algorithm 4 A Classic Tit-for-Tat strategy.

Parameters: θmin

Input:
Ω ▷ The offer space.
u1 ▷ The agent’s own utility function.
rv1 ▷ The agent’s own reservation value.
T ▷ The deadline.
M ▷ A model of the opponent.
t ▷ The current time.
ho1 ▷ The observed negotiation history.
ωrec ▷ The offer last proposed by the opponent (if any).

//OPPONENT MODELING
1: M← updateOpponentModel(Ω, T,M, t, ωrec)
2: û2 ← getEstimatedOpponentUtility(M)

//BIDDING STRATEGY
// Get the next offer to propose according to Equation (3.12)
// We split this calculation into two parts:
// 1) Get a set of candidate offers C.
// 2) Find the offer that maximizes our utility.
// Note that the calculation of ∆cont(ω) depends on the chosen
// expressions for con1 and con2.

3: C ← { ω ∈ Ω | ∆cont(ω) > θmin ∧ u1(ω) > rv1}
4: if C = ∅ then
5: ωnext ← . . . // Use any alternative method to pick an offer here.
6: else
7: ωnext ← argmaxω { u1(ω) | ω ∈ C}
8: end if

//ACCEPTANCE STRATEGY
//Get the last proposal received from the opponent, and accept it if and
//only if it is at least as good as the offer the agent is about the propose.

9: acceptOffer ← u(ωrec) ≥ u(ωnext)

// RETURN SELECTED ACTION
10: if acceptOffer then
11: Return (a, ωrec)
12: else
13: Return (p, ωnext)
14: end if

3.2. BIDDING STRATEGIES 75

this number by n), and how many different offers it has so far proposed to
the opponent (we denote this number by m). That is, n := |Ωrec

t | and
m := |Ωprop

t |. Then, if m ≤ n, our agent will propose ωm+1. On the other
hand, if m > n then it will pick a random integer r such that 1 ≤ r ≤ m
and propose ωr.

An implementation of the MiCRO strategy is given in Algorithm 5.
The intuition behind MiCRO is that, like any other TFT algorithm,

it tries to make a concession whenever the opponent makes a concession.
However, since it assumes neither of the two agents know anything about the
other agent’s utility function, MiCRO does not care how large the opponent’s
concessions are. After all, the size of the opponent’s concession as perceived
by our agent says nothing about the size of the concession the opponent
intended to make. The opponent might make a large concession in terms of
its own utility u2, but this may result in a very small concession measured in
our agent’s own utility u1. For the same reason MiCRO never makes large
concessions to its opponent. In fact, it always makes exactly the smallest
possible concession: it just proposes the next offer on its list. Another
difference between MiCRO and classic TFT is that MiCRO uses a different
definition of ‘concession’. That is, even if the opponent’s new proposal
offers less utility to ag1 than the opponent’s previous proposal, MiCRO
still considers this a concession, as long as it is different from any of the
opponent’s previous offers. After all, if the opponent makes offers in order
of decreasing utility for itself, then every new proposal is indeed a concession
from his point of view.

Note that MiCRO can indeed be seen as a TFT algorithm, with the
following concession measures:

con1(Ω
prop
t) := |Ωprop

t |

con2(Ω
rec
t) := |Ωrec

t |

and that uses Eq. (3.12) to select the next offer to propose, with θmin = 0.
At first sight, it may seem that MiCRO must be very slow in large

negotiation domains, since it makes only minimal concessions. If a domain
contains tens of thousands of offers, then you may therefore expect it to
take a long time before MiCRO has conceded enough for the opponent to be
willing to accept any of MiCRO’s proposals. However, in practice it turns
out to be rather the opposite. When two MiCRO agents negotiate against
each other they typically come to an agreement much faster than most other
negotiation strategies. The reason for this, is that MiCRO does not spend
any time updating any opponent modeling algorithms. In each turn it just

76 CHAPTER 3. NEGOTIATION STRATEGIES

performs a few very simple calculations and then proposes the next offer on
its list, which makes it very fast.

Another main advantage of MiCRO is that it is very simple to implement,
since it does not require any complicated machine learning algorithms for
opponent modeling and it also does not require any parameters to be fine-
tuned.

However, the biggest advantage of MiCRO, is that it makes a nearly
optimal trade-off. On the one hand it is very hardheaded because it only
makes minimal concessions and only keeps conceding as long as the oppo-
nent also keeps conceding. Yet, unlike hardheaded time-based agents, which
often fail to come to an agreement against other hardheaded agents, MiCRO
almost always comes to an agreement when negotiating against itself. This
is because in that case both agents would always keep making concessions
until sooner or later they reach an agreement.

There are just two possible scenarios where a negotiation between two
agents that both apply the MiCRO strategy would fail. The first scenario is
when one of the two agents has a very high reservation value so at some point
it can’t continue conceding because it has already reached its reservation
value before the agents could reach an agreement. The second scenario
is when the deadline is too short compared to the size of the domain, so
there is no time to concede far enough to reach an agreement. However,
as explained above, MiCRO is typically much faster than other strategies,
so in this scenario many other strategies might also suffer to concede fast
enough.

Apart from these two possible scenarios, the main disadvantage of
MiCRO is that it will still fail to make an agreement against a hardheaded
time-based agent that at some point refuses to concede any further before
they reach an agreement.

Exercise 5. MiCRO. Implement an agent based on the MiCRO
strategy in the NegoSimulator framework and let it negotiate against
the RandomAgent, or against any of the agents from the previous
exercises, or against a copy of itself.

3.3 Acceptance Strategies

In the previous sections we have discussed a number of bidding strategies.
In doing so, we also showed a number of different acceptance strategies in

3.3. ACCEPTANCE STRATEGIES 77

Algorithm 5 The MiCRO strategy. Note that offers[m] here corresponds
to ωm+1 in the text.

Input:
offers ▷ A list containing all possible offers, sorted in order

of decreasing utility.
u1 ▷ The agent’s own utility function.
rv1 ▷ The agent’s own reservation value.
ho1 ▷ The observed negotiation history.
ωrec ▷ The offer last proposed by the opponent (if any).

1: m← countUniqueOffersProposedByMe(ho1)
2: n← countUniqueOffersProposedByOpponent(ho1)

// If we have not proposed more unique offers than
// the opponent and the next offer on our list is better than rv1,
// then we will propose a new offer.
// We store this decision in a boolean variable readyToConcede.

3: readyToConcede ← m ≤ n and u1(offers[m]) > rv1

//BIDDING STRATEGY
// If we are ready to concede then propose the next offer on the list.
// Otherwise, pick a random offer that we have already proposed before.

4: if readyToConcede then
5: ωnext ← offers[m]
6: else
7: r ← getRandomInteger(0,m) ▷ Pick random integer r with 0 ≤ r < m.
8: ωnext ← offers[r]
9: end if

//ACCEPTANCE STRATEGY
// Determine the lowest utility we are willing to accept.

10: if readyToConcede then
11: λ← u1(offers[m]) ▷ The utility of the offer we are about to propose next.
12: else
13: λ← u1(offers[m−1]) ▷ The lowest utility among all offers we have already proposed.
14: end if
15: acceptOffer ← u(ωrec) ≥ λ

// RETURN SELECTED ACTION
16: if acceptOffer then
17: Return (a, ωrec)
18: else
19: Return (p, ωnext)
20: end if

78 CHAPTER 3. NEGOTIATION STRATEGIES

the various examples (Algorithms 2–5). In this section we will discuss these
acceptance strategies in a bit more detail.

In the following, let ωnext denote the next offer to make, as decided by
the bidding strategy, and let of ωrec denote the last received offer.

Perhaps the most commonly used acceptance strategy in the literature
is the ACnext strategy that simply accepts ωrec if and only if it is better
than, or equal to ωnext:

Definition 13. The ACnext acceptance strategy accepts if and only if:

u1(ωrec) ≥ u1(ωnext) (3.16)

At first sight, this makes perfect sense, because it simply let the bid-
ding strategy do all the work to decide which offers our agent will consider
acceptable. However, the problem with this strategy, is that it can lead to
somewhat illogical decisions when the strategy is not purely monotonic. By
‘monotonic’ we mean that the offers proposed by the agent keep always keep
decreasing in terms of the utility for that agent. More precisely:

Definition 14. A bidding strategy for agent agi is monotonic, if for any
negotiation history h, and any two proposals (i, p, ω, t) ∈ h, (i, p, ω′, t′) ∈ h
generated by that strategy for which t < t′, we have ui(ω) > ui(ω

′)

While each of the bidding strategies we discussed above in general pro-
poses offers in order of decreasing utility, it is certainly not the case that
every proposal is always followed by a proposal with lower utility. Therefore,
none of these strategies are monotonic.

The problem with ACnext and non-monotonic bidding strategies is illus-
trated in Figure 3.4. Before we explain the problem, we should first highlight
a few important details about this figure. Firstly, note that the vertical axis
does not represent ag2’s true utility u2, but rather its estimated utility û2,
as estimated by agent 1’s opponent modeling algorithm. Secondly, note that
we have zoomed in a bit so that the horizontal axis shows only shows values
between 0.65 and 0.77. Finally, note that we have drawn the aspiration lev-
els of agent 1 in the diagram at three different times: t1, t2, and t3, where
t1 < t2 < t3.

Now, let us suppose that our agent ag1 uses a time-based strategy, based
on Equation (3.1). Furthermore, suppose that at some time t1 the aspiration
level λ1(t1) of our agent is 0.74 and our agent proposes the offer ω1 with
utility u1(ω1) = 0.79. Next, suppose that agent ag2 rejects this proposal, so
after a small amount of time our agent gets to propose a new offer in the

3.3. ACCEPTANCE STRATEGIES 79

next turn, at time t2. Meanwhile, our agent’s aspiration level has dropped
to, say, λ1(t2) = 0.69. We see in the diagram that there are several offers
with utility between 0.69 and 0.74 that can now be proposed but, according
to Eq. (3.1), our agent will propose the one with highest estimated opponent
utility û2. This offer is denoted by ω2 and we see that u1(ω2) = 0.7. Again,
suppose this offer is rejected and instead ag2 makes a counter-proposal,
which is denoted ωrec in the diagram, with utility u1(ωrec) = 0.71. Then,
in the next turn, at time t3, suppose the aspiration level has dropped to
0.67. Among all offers with u1(ω) > 0.67 that we have not proposed yet,
the one with highest estimated opponent utility û2 is now ω3, with utility
u1(ω3) = 0.7. So, the bidding strategy will select ω3 to propose next.

Now, if our agent uses ACnext, it will compare ωrec with ω3. This means
our agent will reject ωrec, because ω3 yields more utility. But this clearly
does not make sense, because our agent has already proposed ω2 which
yielded less utility than ωrec. So, if our agent was willing to propose ω2 with
utility 0.7, then it should certainly be willing to accept ωrec with utility 0.71.
In fact, according to its aspiration level it should be willing to propose or
accept any offer with utility higher than 0.67.

Rejecting offer ωrec only makes sense if our agent thinks it could obtain
a better deal in the future, but if that’s the case then our agent should have
never proposed ω2, and its aspiration level should not have dropped to 0.67.

The problem illustrated above can be resolved easily by using the aspira-
tion level itself to make the acceptance decision, rather than using the offer
ωnext that was chosen based on the aspiration level. Indeed, we used this
acceptance strategy in Algorithms 2 and 3. We will denote this strategy by
ACasp.

Definition 15. The ACasp acceptance strategy accepts if and only if:

u1(ωrec) ≥ λ(t) (3.17)

where λ is the aspiration function and t is the time at which the decision is
made.

Of course, the problem with ACasp is that it only works if your bidding
strategy indeed uses an aspiration function. For other bidding strategies,
such as Tit-for-Tat or MiCRO, that do not make use of aspiration functions,
there is another straightforward solution. Namely, to accept any offer that
is better than the offer you are going to propose next, or better than any
of the offers you have already proposed before. We will denote this strategy
by AClow.

80 CHAPTER 3. NEGOTIATION STRATEGIES

Definition 16. The AClow acceptance strategy accepts if and only if:

u1(ωrec) > min{u1(ω) | ω ∈ Ωprop
t ∪ {ωnext}} (3.18)

where t is the time at which the decision is made and Ωprop
t denotes the set

of offers so far proposed by our agent (as defined by Eq. (3.2)).

Note that we used this acceptance strategy in our implementation of
MiCRO in Algorithm 5 (although this may not be immediately obvious
from the notation).

The strategies ACnext, ACasp and AClow are all based on the same prin-
ciple: only accept an offer if you would also be willing to propose that same
offer yourself. While this principle makes sense, it may be somewhat too
strict when the negotiations are close to the deadline. In that case it can
be beneficial to even accept offers that are actually somewhat less valuable
than those offers that you are willing to propose.

The idea is that near the deadline, proposing an offer is more risky than
accepting an offer, because an acceptance yields a guaranteed amount of
utility, while a proposal could be rejected by the opponent, so it brings
along the risk that the negotiations may fail. The closer we get to the
deadline, the more important this risk becomes.

Therefore, one could argue that when you decide to make a proposal, you
should ask for a bit more utility than what you would be willing to accept, in
order to offset the increased risk. This can modeled by a parametrized ver-
sion of ACnext [7], which has two parameters α and β and which is denoted
by ACnext(α, β).

Definition 17. Let α, β ∈ R be two real numbers. Then the ACnext(α, β)
acceptance strategy accepts if and only if:

α · u1(ωrec) + β ≥ u1(ωnext) (3.19)

Note that if α = 1 and β = 0, then ACnext(α, β) is just identical to
ACnext. Typically, the values of α and β would both be non-negative. While
there is no mathematical reason why they could not be negative, there does
not seem to be any obvious reason to ever consider such values. After all,
it does not make a lot of sense to propose an offer with a utility of, say,
u1(ω) = 0.6 if you are not willing to accept an offer with that same amount
of utility, or better. The same generalization can also be applied to ACasp or
AClow. That is, we could define ACasp(α, β) or AClow(α, β) in an analogous
manner. Of course, an obvious disadvantage of such parametrized strategies,
is that it requires choosing the right values of α and β, which may be difficult.

3.3. ACCEPTANCE STRATEGIES 81

0.66 0.68 0.7 0.72 0.74 0.76
0

0.2

0.4

0.6

0.8

1

ω2

ωrec

ω3

ω1

λ1(t3) λ1(t2) λ1(t1)

Utility of Agent 1

E
st
im

a
te
d
U
ti
li
ty

of
A
g
en
t
2

Figure 3.4: The problem with ACnext. At t1 agent 1 proposes ω1, at t2
agent 1 proposes ω2, and at t3 agent 1 has the choice between proposing ω3

or accepting ωrec. According to ACnext, the agent should reject. However,
this does not make sense, since he has already proposed ω2 which is actually
worse than ωrec.

Another reason why it could be advantageous for our agent to accept
offers that yield less utility than the offers it is willing to propose, is that
this would allow our agent to apply a very hardheaded bidding strategy, in
order to entice the opponent to make large concessions, while at the same
time it still allows our agent to come to an agreement in case the opponent
is not willing to make such concessions. In other words, it allows our agent
to pretend to be more hardheaded than what he really is.

Exercise 6. AClow. Adapt the implementation of your Tit-for-Tat
agent from Exercise 4 to apply the AClow acceptance strategy instead
of ACnext.

82 CHAPTER 3. NEGOTIATION STRATEGIES

3.4 Reproposing

We will now discuss a simple technique that can be added on top of any of the
previously described negotiation strategies, that can make them somewhat
better. This approach was described, for example, in [47] and in [16].

Let us explain it with an example. Suppose that we have a negotiation
domain with 10 possible offers: Ω = {ω1, ω2, . . . , ω10} and suppose that our
agent’s utility function is given by u1(ωj) = 0.1j. That is, u1(ω1) = 0.1,
u1(ω2) = 0.2, etcetera, so our agent’s most preferred offer is ω10. Fur-
thermore, suppose that our agent ag1 follows a time-based strategy with a
linear aspiration function (γ = 1) and without opponent modeling, as given
by Eq. (3.3).

Now, suppose that, from the point of view of ag1, the negotiations pro-
ceed as follows (see also Figure 3.5):

1. At t = 0.0: λ1(t) = 1.0 ag1 proposes ω10

2. At t = 0.05: ag2 proposes ω4

3. At t = 0.10: λ1(t) = 0.9 ag1 proposes ω9

4. At t = 0.15: ag2 proposes ω6

5. At t = 0.20: λ1(t) = 0.8 ag1 proposes ω8

6. At t = 0.30: ag2 proposes ω2

7. At t = 0.50: λ1(t) = 0.5 ag1 proposes ...

At time t = 0.50, our agent’s strategy prescribes that it should propose
ω5. Ideally, however, ag1 would like to accept ω6 instead, because that
would yield more utility. The problem is that the AOP does not allow that,
because it only allows accepting the last received offer, which is ω2. Note
that earlier our agent did not accept ω6, because at the moment he received
that offer, his aspiration level was still at λ1(t) = 0.8 which was greater than
u1(ω6) = 0.6.

The solution, is to override the bidding strategy and propose ω6 instead
of ω5. Since ω6 was already proposed before by ag2, it is very likely that
ag2 will now accept it, and therefore it should indeed be better for ag1 to
propose ω6, than to propose ω5. We call this reproposing because the agent
is proposing an offer that was already proposed earlier by the opponent.
Algorithm 6 shows how this technique can be implemented on top of any
generic agent.

Definition 18. We say an agent agi reproposes an offer ω if agi proposes
it, while it was earlier already proposed by the other agent agj and agi itself
has not yet proposed it since then.

3.4. REPROPOSING 83

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

λ1

ω10

ω4

ω9

ω6

ω8

ω2

ω5

Time

U
ti
li
ty

of
A
ge
n
t
1

Figure 3.5: The benefit of reproposing. The red dots represent proposals
made by ag1, the red line represents ag1’s aspiration level λ1 as a function of
time, and the black dots represent proposals made by ag2. At time t = 0.5,
the bidding strategy of ag1 suggests to propose ω5. However, it makes more
sense for ag1 to propose ω6, which earlier was already proposed by ag2.
Note that at that time ag1 cannot accept ω6, because the AOP only allows
accepting the last received proposal, which was ω2.

84 CHAPTER 3. NEGOTIATION STRATEGIES

Exercise 7. Reproposing Adapt the agents that you have imple-
mented in the previous exercises to make them apply the reproposing
technique, as described in Algorithm 6.

3.4. REPROPOSING 85

Algorithm 6 Generic BOA Agent for the alternating offers protocol that
applies reproposing.

Input:
Ω ▷ The offer space.
u1 ▷ The agent’s own utility function.
rv1 ▷ The agent’s own reservation value.
T ▷ The deadline.
M ▷ A model of the opponent.
t ▷ The current time.
ho1 ▷ The observed negotiation history.
ωrec ▷ The offer last proposed by the opponent (if any).

//OPPONENT MODELING
1: M← updateOpponentModel(Ω, T,M, t, ωrec)

//BIDDING STRATEGY
2: ωnext ← biddingStrategy(Ω, u1, rv1, T,M, t, ho1)

//CHECK IF WE CAN FIND A BETTER OFFER TO REPROPOSE
//From the negotiation history, extract the set of all offers that have
//so far been proposed by this agent:

3: Ωprop ← getProposedOffers(ho
1)

//From the negotiation history, extract the set of all offers that have
//so far been proposed by the opponent:

4: Ωrec ← getReceivedOffers(ho
1)

// See if we can find any offer that can be reproposed:
5: if Ωrec \ Ωprop ̸= ∅ then
6: ωrep ← argmax{u1(ω) | ω ∈ Ωrec \ Ωprop}
7: if u1(ωrep) ≥ u1(ωnext) then
8: ωnext ← ωrep

9: end if
10: end if

//ACCEPTANCE STRATEGY
11: acceptOffer ← acceptanceStrategy(Ω, u1, T,M, t, ho1, ωrec, ωnext)

// RETURN SELECTED ACTION
//Finally, return the selected action (accept or propose).

12: if acceptOffer then
13: Return (a, ωrec)
14: else
15: Return (p, ωnext)
16: end if

86 CHAPTER 3. NEGOTIATION STRATEGIES

Chapter 4

Opponent Modeling

In this chapter we will discuss various techniques that have been proposed in
the literature to model the opponent. Readers who are not interested in the
details of such opponent modeling algorithms can safely skip this chapter,
since the rest of this book does not depend on it.

We can distinguish between three types of opponent modeling:

1. Learning the opponent’s utility function, during the negotiation.
2. Learning the opponent’s strategy, during the negotiation.
3. Learning the opponent’s strategy from earlier negotiations.

We will discuss each of these types respectively in the following three sec-
tions.

Note that we do not discuss learning the opponent’s utility function from
earlier negotiations, because in most scenarios studied in the literature the
utility function would change with every new negotiation, so this wouldn’t
make much sense.

4.1 Learning the Opponent’s Utility Function

In this section we will discuss several techniques that can be used by our
agent to learn the opponent’s utility function, based on the proposals that
it receives from its opponent.

Specifically, we will discuss the following techniques:

1. Bayesian learning.
2. Scalable Bayesian learning.
3. Frequency Analysis.

87

88 CHAPTER 4. OPPONENT MODELING

We should note that all these techniques assume that the negotiations take
place over a multi-issue domain and that that the opponent’s utility function
u2 is linear, so it is of the form of Eq. (2.3). Therefore, these techniques are
not applicable to other types of negotiation domains.

4.1.1 Bayesian Learning

Bayesian learning [27] is one of the earliest and still most commonly used
techniques in automated negotiation to learn the opponent’s utility function.

The idea is as follows. Suppose that we have some given set of possible
utility functions U and, based on the proposals π1, π2, . . . , πk that our agent
has so far received from its opponent, we want to calculate the probability,
for each function u ∈ U , that that function u is the actual utility function u2
of the opponent. That is, for each u ∈ U we want to calculate a probability
P (u2 = u|π1, π2, . . . , πk).

4.1.1.1 Bayesian Learning in General

Bayesian learning is a technique that is much older than automated negotia-
tion and it has been used in many other applications. So, before we explain
how it can be applied to automated negotiation, we will here first explain
how it works in general.

The goal of Bayesian learning is, given a set of hypotheses Y , a sequence
of observations o⃗ = (o1, o2, . . . , ok), and a prior probability P (y) for each
hypothesis y ∈ Y , to calculate the posterior probability P (y|o⃗) that the
hypothesis y is true. Here, P (y) denotes the probability that we assign to
hypothesis y before making any observations, while P (y|o⃗) represents the
probability we assign to y after making the observations o1, o2, . . . , ok.

For example, suppose that somebody draws a card from a standard deck
of 52 playing cards, without showing it to us. Then, for us, the prior prob-
ability that this card is the ace of spades would be P (A♠) = 1

52 . Next,
suppose that this person tells us that the card is indeed a spades card. Now,
with this new information, the probability for us that it is the ace of spades
is suddenly four times higher: P (A♠ | ♠) = 1

13 .

In this example it was straightforward to calculate P (y|o) directly. How-
ever, in practice, it often happens that it is much easier to calculate P (o|y)
instead. In such cases we can use a theorem known as Bayes’ rule to express
P (y|o) in terms of P (o|y) and P (y).

It is important to understand that we always assume that there is exactly

4.1. LEARNING THE OPPONENT’S UTILITY FUNCTION 89

one hypothesis in Y that is true. Therefore, we always have:∑
y∈Y

P (y) = 1 and
∑
y∈Y

P (y|o⃗) = 1

To derive Bayes’ rule, we start from the following identities, which are
well-known from basic probability theory, and which hold for any arbitrary
‘events’ y and o:

P (y, o) = P (y | o) · P (o) = P (o | y) · P (y) (4.1)

P (o) =
∑
y′∈Y

P (o | y′) · P (y′) (4.2)

From Equation (4.1) we can then directly derive:

P (y | o) =
P (o | y) · P (y)

P (o)

and then using Equation (4.2) we obtain Bayes’ rule:

P (y | o) =
P (o | y) · P (y)∑

y′∈Y P (o | y′) · P (y′)

Note that indeed, this rule allows us to express P (y|o) on the left-hand side
in terms of P (o|y) and P (y) on the right-hand side.

If there are multiple observations o1, o2, . . . , ok, then this becomes:

P (y | o1, o2, . . . , ok) =
P (o1, o2, . . . , ok | y) · P (y)∑

y′∈Y P (o1, o2, . . . , ok | y′) · P (y′)
(4.3)

and if it holds that for any given hypothesis y, the probabilities of observa-
tions o1, o2, . . . , ok, are all independent, then we can write this as:

P (y|o1, o2, . . . , ok) =
P (o1|y) · P (o2|y) · . . . · P (ok|y) · P (y)∑

y′∈Y P (o1|y′) · P (o2|y′) · . . . · P (ok|y′) · P (y′)

(4.4)
Now, suppose that we have already calculated, for each hypothesis y ∈ Y ,

the probability P (y|o1, o2, . . . , ok), which we will denote as P (y|o⃗). Next,
suppose we make a new observation ok+1. We now want to update the
probability of each hypothesis, taking into account this new observation.
That is, for all y ∈ Y we now want to calculate P (y|o⃗, ok+1), given P (y|o⃗).

90 CHAPTER 4. OPPONENT MODELING

To do this, first note that the denominator of Eq. (4.4) is just a nor-
malization constant that ensures that the sum of all probabilities equals 1,
which is the same for every hypothesis y ∈ Y . Ignoring this constant for a
moment, we can define the unnormalized probability P̃ (y|o⃗) as:

P̃ (y|o⃗) := P (y) · P (o1|y) · P (o2|y) · . . . · P (ok|y) (4.5)

which is just the numerator of the right-hand side of Eq. (4.4).

We now see that to update this unnormalized probability after a new
observation ok+1 we just need to multiply it with P (ok+1|y). That is:

P̃ (y|o⃗, ok+1) = P̃ (y|o⃗) · P (ok+1|y) (4.6)

Then, after we have done this for every possible hypothesis y ∈ Y we can
calculate the true probabilities P (y|o⃗, ok+1) by normalizing:

P (y|o⃗, ok+1) =
P̃ (y|o⃗, ok+1)∑

y′∈Y ′ P̃ (y′|o⃗, ok+1)
(4.7)

4.1.1.2 Implementation

We will here discuss how the calculations discussed above can be imple-
mented.

First determine, for every y ∈ Y , the prior probability P (y). Since
initially we haven’t made any observations yet, o⃗ will be empty and thus by
Eq. (4.5) we have P̃ (y | o⃗) = P (y), for all y ∈ Y .

Then, every time we make a new observation ok+1, we take the following
steps:

1. For each y ∈ Y , calculate:

P̃ (y|o⃗, ok+1) = P̃ (y|o⃗) · P (ok+1|y)

2. Calculate the sum:

S =
∑
y∈Y

P̃ (y|o⃗, ok+1)

3. For each y ∈ Y , calculate:

P (y|o⃗, ok+1) =
1

S
· P̃ (y|o⃗, ok+1)

4.1. LEARNING THE OPPONENT’S UTILITY FUNCTION 91

Note that this requires two lists of size |Y | each: one list to store all the
values of P̃ (y|o⃗) and one to store the values of P (y|o⃗).

However, this can be done a bit more efficiently. To see how, first note
that we can modify the implementation as follows.

Every time we make a new observation ok+1, we take the following steps:

1. Pick an arbitrary number Ck+1.

2. For each y ∈ Y , calculate:

P̃ (y|o⃗, ok+1) = P̃ (y|o⃗) · P (ok+1|y) · Ck+1

3. Calculate the sum:

S =
∑
y∈Y

P̃ (y|o⃗, ok+1)

4. For each y ∈ Y , calculate:

P (y|o⃗, ok+1) =
1

S
· P̃ (y|o⃗, ok+1)

Note that the fact that in Step 2 each P̃ (y|o⃗, ok+1) is multiplied by a constant
Ck+1 does not affect the correctness of the calculations, because it means
the sum S in Step 3 will also be multiplied by the same constant, which
means that in step 4 this constant will cancel out against itself.

Furthermore, note that every time we make a new observation we can
choose a different value for this constant, and that instead of Eq. (4.5), we
are now calculating the unnormalized probability P̃ (y|o⃗) as:

P̃ (y|o⃗) = P (y) · C1 · P (o1|y) · C2 · P (o2|y) · . . . · Ck · P (ok|y) (4.8)

This means that if we choose each Ck+1 as follows:

Ck+1 =
1∏k

i=1Ck

· 1∑
y′∈Y P (y′|o⃗)

(4.9)

then, by combining Eq. (4.8) and Eq. (4.9) with Eq. (4.3), we see that for
every y ∈ Y we now have:

Ck+1 · P̃ (y|o⃗) = P (y|o⃗)

Knowing this, we can simplify our implementation, since it is now equiv-
alent to the following:

92 CHAPTER 4. OPPONENT MODELING

1. For each y ∈ Y , calculate:

P̃ (y|o⃗, ok+1) = P (y|o⃗) · P (ok+1|y) (4.10)

2. Calculate the sum:

S =
∑
y∈Y

P̃ (y|o⃗, ok+1)

3. For each y ∈ Y , calculate:

P (y|o⃗, ok+1) =
1

S
· P̃ (y|o⃗, ok+1)

While this looks very similar to our original implementation, the difference
is that step 1 now involves P (y|o⃗), rather than P̃ (y|o⃗). The great advantage
of this, is that we now only need one list of size |Y |. In Step 1 we can use
this list to store the values of P̃ (y|o⃗, ok+1) and then in Step 3 we can simply
overwrite it to store the values of P (y|o⃗, ok+1). In our initial implementation
this was not possible, because we needed to keep the values of P̃ (y|o⃗, ok+1)
for the next iteration. Also note that we do not actually need to calculate
the constants Ck+1, since this last implementation does not use them. We
only mentioned these constants and Eq. (4.9) to show the correctness of the
last implementation.

4.1.1.3 Bayesian Learning for Automated Negotiation

We will now explain how Bayesian Learning can be applied in automated
negotiation to learn the utility function of the opponent.

In general, to apply Bayesian learning, we need the following ingredients:

� A set of possible observations O.
� A set of hypotheses Y .
� For any hypothesis y ∈ Y , a prior probability P (y).
� A formula that allows us to calculate, for any hypothesis y ∈ Y , and
any observation o ∈ O, the probability P (o | y).

In the context of automated negotiation, the observations that our agent
makes are the proposals that it receives from the opponent. Recall that such
a proposal π is defined as a tuple of the form (2, p, ω, t) for some offer ω and
some time t. So we have:

O = {(2, p, ω, t) | ω ∈ Ω, t ∈ [0, T]}

4.1. LEARNING THE OPPONENT’S UTILITY FUNCTION 93

The set of hypotheses would be some set of possible utility functions U
for the opponent. To stress that each hypothesis is now a utility function,
we will from now on use the symbol U to denote the set of hypotheses
instead of Y . We will discuss how to choose these utility functions below in
Section 4.1.1.4.

For the prior probabilities, the simplest approach is to assign them all an
equal probability. That is: P (u) = 1

|U | . However, depending on the domain
of application, you could also choose different prior probabilities that take
into account some background knowledge you may have about that specific
application.

Finally, we need to determine how to calculate P (π|u) for any arbitrary
proposal π ∈ O and utility function u ∈ U . That is, we have to make
an assumption about which proposals the opponent would make, if he had
utility function u. In other words, we have to make some assumptions about
his strategy. In order to do this, the authors of [27] modeled the opponent’s
strategy as a linear time-based strategy. So, at any time t they expect the
opponent to propose an offer ω with normalized utility u2(ω) = 1 − c · t

T ,
where c is some constant between 0 and 1. However, since this is of course not
guaranteed to be exactly true, they assumed the opponent’s actual proposal
at any time t was drawn from the following probability distribution function:

P ((2, p, ω, t) | u) = N (u(ω) | 1− c · t
T

, σ) (4.11)

where the notation N (r|µ, σ) represents the probability of drawing the num-
ber r from a Gaussian probability distribution with mean µ and standard
deviation σ.

With this equation the Bayesian opponent model can be implemented
straightforwardly using Equations (4.10) and (4.7). An example implemen-
tation is given in Algorithm 7.

Then, whenever our agent needs to have an estimation û2(ω) of the oppo-
nent’s utility for some offer ω, it can be calculated by taking the expectation
value over all hypothetical utility functions u ∈ U :

û2(ω) =
∑
u∈U

P (u|π⃗) · u(ω) (4.12)

where π⃗ is the list of all proposals our agent has so far received from the
opponent.

94 CHAPTER 4. OPPONENT MODELING

Algorithm 7 Opponent modeling algorithm based on Bayesian learning

Parameters:
σ ▷ Standard deviation of the Gaussian distribution.
c ▷ Concession speed of hypothesized opponent strategy.
U ▷ A set of hypothetical utility functions for the opponent.
Input:
T ▷ The deadline.
t ▷ The current time.
ωrec ▷ The last received offer.
probs ▷ A map that maps each u ∈ U to the probability

value P (u | π1, π2, . . . , πk) as calculated in the
previous call to this algorithm.

// Ensure that we initially assign the same probability to each
// hypothesis.

1: if this is our first turn then
2: for u ∈ U do
3: probs[u]← 1

|U |
4: end for
5: end if

// Update all the values in probs, given the newly received offer ωrec

// and simultaneously calculate the sum of all these values.
6: sum← 0
7: for u ∈ U do
8: probs[u]← probs[u] · N (u(ωrec) | 1− c · t

T , σ)
9: sum← sum+ probs[u]

10: end for

// Ensure that all probabilities are normalized.
11: for u ∈ U do
12: probs[u]← probs[u]/sum
13: end for

14: return probs

4.1. LEARNING THE OPPONENT’S UTILITY FUNCTION 95

4.1.1.4 Choosing the Utility Hypotheses

We now know how to apply Bayesian learning for some given set of hypo-
thetical utility functions U . However, we still need to discuss how to choose
this set.

To do this, let us first assume that the negotiation domain is a multi-issue
domain with m issues and that we know that the opponent’s utility function
u2 is linear, so it can be expressed in the form of Eq. (2.3). Therefore, it
can be described in terms of its weights w1

2, w
2
2, . . . w

m
2 and its evaluation

functions v12, v
2
2, . . . v

m
2 .

To simplify the notation a bit, in the rest of this section we will suppress
the subscript 2 and just write wj instead of wj

2 and vj instead of vj2, since
we are exclusively talking about the opponent ’s utility anyway.

Furthermore, we will use the notation xj,l to denote the l-th option for
issue Ij . For example, if I1 represents a movie to choose:

I1 = {The Godfather ,Casablanca,The Big Lebowski}

Then we have:

x1,1 = The Godfather x1,2 = Casablanca x1,3 = The Big Lebowski

In addition, if vj is the evaluation function of agent ag2 for issue Ij then we
use the notation vj,l as a shorthand for the value it assigns to option xj,l.
That is:

vj,l := vj2(xj,l)

So, to fully specify a linear utility function, we need to specify the value
of each weight wj and each vj,l. This means that if the domain has m issues
and each issue has s options, then we need to specify m+m · s parameters.
For example, if m = 4 and s = 3:

w1 = 0.3, w2 = 0.5, w3 = 0.1, w4 = 0.1

v1,1 = 0.0, v2,1 = 0.3, v3,1 = 0.3, v4,1 = 1.0

v1,2 = 0.4, v2,2 = 0.7, v3,2 = 0.0, v4,2 = 1.0

v1,3 = 1.0, v2,3 = 0.9, v3,3 = 0.0, v4,3 = 0.2

Now, one way to select a finite set of hypothetical utility functions, is to
restrict each of these parameters to only have values in some finite domain,
such as the set {0, 0.1, 0.2, . . . , 0.9, 1.0}. Since this set has 11

96 CHAPTER 4. OPPONENT MODELING

xj,1 xj,3 xj,5 xj,7 xj,9 xj,11

0

0.2

0.4

0.6

0.8

1 Λ3
j Λ7

j Λ11
j

E
va
lu
at
io
n
v
j
(x

j,
l)

Figure 4.1: Some examples of triangular evaluation functions for an issue Ij
with 11 options.

possible values, this gives us a total of 11m+m·s possible utility functions.
Unfortunately, however, this is an astronomically large number, even for
small domains with only m = 3 and s = 4. This is a problem because, as
can be seen in Algorithm 7, we need to loop over all elements of U , which
is clearly unfeasible for such a large set.

The authors of [27] therefore made some simplifying assumption to de-
crease this number. For example, they assumed that all issues are ordered
sets, and that the evaluation functions are triangular. That is, if xj,n denotes
ag2’s most preferred option of issue Ij , then they assume the evaluation func-
tion vj first increases linearly from 0 to 1 until the option xj,n is reached,
after which it decreases linearly from 1 to 0. Figure 4.1 displays a few ex-
amples of such functions. Formally, for any issue Ij with size sj := |Ij | and
any integer n with 1 ≤ n ≤ sj , the triangular function Λn

j is defined as:

Λn
j (xj,l) =


l−1
n−1 if l < n

1 if l = n
sj−(l−1)
sj−(n−1) if l > n

(4.13)

This assumption of triangular evaluation functions greatly reduces the
size of the set U , because now to specify a single evaluation function vj ,
we only need to specify the most preferred option xj,n ∈ Ij , rather than
specifying a number vj,l for every single option xj,l ∈ Ij . This reduces the

4.1. LEARNING THE OPPONENT’S UTILITY FUNCTION 97

number of possible evaluation functions for Ij from 11sj to just sj . And
therefore it reduces the total number of utility functions to 11m · sm (if all
issues have the same size s).

With these reductions the set U becomes small enough to apply Bayesian
learning in practice to small domains with just a few issues. However, since
the set U still grows exponentially with the number of issues, this approach
is still not feasible scenarios with many issues. Luckily however, the authors
of [27] also proposed a more scalable version of Bayesian opponent modeling,
which we will discuss next.

Exercise 8. Bayesian Learning. Implement the Bayesian learn-
ing algorithm discussed above. Next, run some negotiations with
your time-based agent and/or Tit-for-Tat agent from Exercises 2 and
4, but using this new opponent modeling algorithm, instead of the
DummyOpponentUtilityModel.

4.1.2 Scalable Bayesian Learning

Before we explain the scalable version of Bayesian learning for automated
negotiation, let us first take a step back and focus again on the general case.

Let us assume we have some set of hypotheses Y and that each hy-
pothesis y ∈ Y can be decomposed into a number of sub-hypotheses: y =
(y1, y2, . . . , ym), so the hypothesis space can be decomposed as the Cartesian
product of a number of sub-hypothesis spaces: Y = Y 1 × Y 2 × · · · × Y m.

For example, the hypothesis that a given playing card is the ace of spaces
can be written as y = (A,♠).

Now, the probability P (y | o⃗) can be written as:

P (y | o⃗) =
m∏
j=1

P (yj | o⃗)

and the Bayesian update rule (4.10) can be applied to each sub-hypothesis
separately:

P̃ (yj | o⃗, ok+1) = P (yj | o⃗) · P (ok+1 | yj) (4.14)

The question, now, is how to calculate P (ok+1 | yj). After all, we typically
need the full hypothesis y to be able to calculate the probability of some
observation.

Before answering that question, let us first return to the topic of auto-
mated negotiation. In the previous section we have seen that each hypoth-

98 CHAPTER 4. OPPONENT MODELING

esis y corresponds to a utility function u, which is defined by a number of
parameters: for each issue Ij a weight wj and an evaluation function vj .

This means that the hypothesis space can be written as:

Y = Y 1
w × Y 2

w × · · · × Y m
w × Y 1

v × Y 2
v × · · · × Y m

v

where each Y j
w is a set of possible values for weight wj , and each Y j

v is a set
of possible evaluation functions defined over issue Ij .

For example, if we assume that each weight must be an integer multiple
of 0.1 and must be between 0 and 1, then we have:

Y 1
w = Y 2

w = · · · = Y m
w = {0, 0.1, 0.2, . . . , 0.9, 1.0}

Furthermore, if we assume that each evaluation function must be a triangular
function (See Eq. (4.13)), then for each Y j

v we have:

Y j
v = {Λ1

j ,Λ
2
j , . . . ,Λ

sj
j }

where sj is the size of issue Ij .
So a hypothesis y is now a tuple (w1, w2, . . . wm, v1, v2, . . . vm), where

each wj is a value from the set of weight hypotheses Y j
w and each vj is an

evaluation function from the set of evaluation hypotheses Y j
v . Furthermore,

each such hypothesis y corresponds to a utility function uy:

uy(ω) :=

m∑
j=1

wj · vj(ω)

Recall from Sec. 2.2.3.3 that we may abuse notation by writing vj(ω) when
we actually mean vj(xj), where xj is the j-th component of ω.

For a given hypothesis y and a given sequence of received proposals π⃗
we can now express the posterior probability as:

P (y|π⃗) =

m∏
j=1

P (wj |π⃗) ·
m∏
j=1

P (vj |π⃗)

and each probability P (wj |π⃗) and P (vj |π⃗) can be updated separately. For
example, for each weight wj the update rule (4.10) now becomes:

P̃ (wj |π⃗, πk+1) = P (wj |π⃗) · P (πk+1|wj) (4.15)

and similarly, for the evaluation functions vj :

P̃ (vj |π⃗, πk+1) = P (vj |π⃗) · P (πk+1|vj) (4.16)

4.1. LEARNING THE OPPONENT’S UTILITY FUNCTION 99

Note that these two equations are just special cases of Eq. (4.14), spe-
cific to automated negotiation. So, our original question how to calcu-
late P (ok+1 | yj) can now be reformulated as the question how to calculate
P (πk+1|wj) and P (πk+1|vj).

To answer this, we first define for each issue Ij its expected weight wj

and its expected evaluation function vj as follows:

wj :=
∑

wj∈Y j
w

wj · P (wj | π⃗) (4.17)

vj(ω) :=
∑

vj∈Y j
v

vj(ω) · P (vj | π⃗) (4.18)

which in turn can be used to define the expected utility function u:

u(ω) :=

m∑
j=1

wj · vj(ω) (4.19)

Next, this allows us to define, for any issue Ij and weight-hypothesis

wj ∈ Y j
w a function u[wj] as follows:

u[wj](ω) :=
m∑
k=1
k ̸=j

wk · vk(ω) + wj · vj(ω)

That is, u[wj](ω) is the utility value calculated by taking, for each issue

Ik, the expectation value of the weight wk, and the expectation value of
vk(ω), except for issue Ij , for which we use the hypothesized weight wj .

Similarly, we can define:

u[vj](ω) :=

m∑
k=1
k ̸=j

wk · vk(ω) + wj · vj(ω)

Then, for any wj ∈ Y j
w we can calculate P (πk+1|wj) as in Eq. (4.11).

but with the variable u replaced by u[wj]. That is:

P ((2, p, ω, t) | wj) := N (u[wj](ω) | 1− c · t
T

, σ) (4.20)

Similarly, P (πk+1|vj) can be calculated as:

P ((2, p, ω, t) | vj) := N (u[vj](ω) | 1− c · t
T

, σ) (4.21)

100 CHAPTER 4. OPPONENT MODELING

See Algorithm 8 for an implementation.

It should be noted, however, that these equations are just approxima-
tions. They are based on the assumption that the current expected utility
function u is already a good approximation to the opponent’s true utility
function u2.

While scalable Bayesian learning largely solves the problem of scalability,
the main disadvantage is that we need to make a lot of assumptions. For
example, we need to assume that the opponent’s utility function is linear,
that the issues are ordered and that the opponent has triangular evaluation
functions. Furthermore, it depends on the chosen model of the opponent’s
bidding strategy and on the chosen standard deviation σ for the Gaussian
distribution.

Exercise 9. Scalable Bayesian Learning. Implement the scal-
able Bayesian learning algorithm discussed in this section. Next,
run some negotiations with your time-based agent and/or Tit-for-Tat
agent from Exercises 2 and 4, but using this new opponent model-
ing algorithm, instead of the dummy opponent model or the regular
Bayesian learning algorithm from Exercise 8.

4.1.3 Frequency Analysis

In this section we will discuss a simpler alternative to Bayesian learning,
called frequency analysis, which is based on the idea that the opponent’s
evaluation functions and weights can be estimated from the frequency with
which the opponent proposes the respective options for each issue. While
this method is perhaps not as elegant or sophisticated as Bayesian learning,
it turns out that in practice it often performs equally well, or even better [5].

The basic idea of frequency analysis is that for any issue Ij and any

option xj,l ∈ Ij of that issue, the value vj2(xj,l) that the opponent assigns
to it can be estimated from the number of times that the opponent makes
proposals containing that option.

For example, in the scenario that Alice and Bob are negotiating about a
visit to the cinema, if Alice keeps making proposals that include the movie
The Godfather, then that is a clear indication that Alice probably likes that
movie very much.

Furthermore, to estimate the opponent’s weights wj
2, the idea is that if

the opponent proposes many different options for the same issue Ij , then
this is an indication that that issue is probably not very important to the

4.1. LEARNING THE OPPONENT’S UTILITY FUNCTION 101

Algorithm 8 Opponent modeling algorithm based on Scalable Bayesian
learning. This function is called every time a new proposal is received, in
order to update our agent’s model of the opponent’s utility function.

Parameters:
σ ▷ Standard deviation of the Gaussian distribution.
c ▷ Concession speed of hypothesized opponent strategy.
Input:
T ▷ The deadline.
t ▷ The current time.
ωrec ▷ The last received offer.
weight hyps ▷ A double array that contains for each issue Ij a list of possible

weights. So, weight hyps[j] is a single array that represents Y j
w.

weight probs ▷ A double array that contains for each issue Ij and each
possible weight wj ∈ Y j

w a probability value P (wj |π⃗).
eval hyps ▷ A double array that contains for each issue Ij a list of possible

evaluation functions. So, eval hyps[j] is a single array that
represents Y j

v .
eval probs ▷ A double array that contains for each issue Ij and each

possible evaluation function vj ∈ Y j
v a probability value P (vj |π⃗).

// Calculate the values of wj and vj(ωrec) according to Eqs. (4.17) and (4.18)
1: for each issue Ij of the domain do

2: wj ←
∑|Y j

w|
l=1 weight hyps[j][l] · weight probs[j][l]

3: vj ←
∑|Y j

v |
l=1 eval hyps[j][l](ωrec) · eval probs[j][l]

4: end for

5: for each issue Ij of the domain do

6: for l ∈ {0, 1, . . . , |Y j
w| − 1} do

7: u[wj] ←
∑m

k=1,k ̸=j w
k · vk + weight hyps[j][l] · vj

8: weight probs[j][l]←
weight probs[j][l] · N (u[wj] | 1− c · t

T , σ) // Eq. (4.15)
9: end for

10: normalize(weight probs[j])

11: for l ∈ {0, 1, . . . , |Y j
v | − 1} do

12: u[vj] ←
∑m

k=1,k ̸=j w
k · vk + wj · eval hyps[j][l](ωrec)

13: eval probs[j][l]←
eval probs[j][l] · N (u[vj] | 1− c · t

T , σ) // Eq. (4.16)
14: end for
15: normalize(eval probs[j])

16: end for
17: return (weight probs, eval probs)

102 CHAPTER 4. OPPONENT MODELING

opponent, so the weight wj
2 should have a low value.

For example, if Alice first proposes to see the movie at 18:00, but then
proposes to see it at 20:00, and then proposes to see it at 22:00, then ap-
parently she does not really care much about the time at which the movie
starts.

As usual, there are many ways how these ideas can be implemented. As
an example, we here present the implementation by van Galen Last [45].1

Let k denote the total number of proposals made by the opponent:

k := |{(i, η, ω, t) ∈ h | i = 2 ∧ η = p}|

and let xj,l denote the l-th option for issue Ij . Furthermore, let fh(xj,l)
denote the number of times that the opponent has proposed an offer that
contained xj,l:

fh(xj,l) := |{(i, η, ω, t) ∈ h | i = 2 ∧ η = p ∧ xj,l ∈ ω}|

Then, each value vj2(xj,l) can be estimated as the number of times the option
xj,l has been proposed by the opponent, divided by the total number of
proposals made by the opponent:

v̂j2(xj,l) =
fh(xj,l)

k

and each weight wj
2 can be estimated as:

ŵj
2 =

max {fh(xj,l) | xj,l ∈ Ij}
k

Note that this approach in general will not yield a normalized utility
function, so you may optionally still want to apply some normalization to
these weights and evaluation functions.

Exercise 10. Frequency Analysis. Implement the frequency anal-
ysis algorithm discussed in this section. Next, run some negotiations
with your time-based agent and/or Tit-for-Tat agent from Exercises 2
and 4, but using this new opponent modeling algorithm.

1The cited paper itself actually does not explain this opponent modeling al-
gorithm, but it can be found in the source code of their agent, which can
be found at https://tracinsy.ewi.tudelft.nl/pubtrac/Genius/browser/src/main/

java/agents/anac/y2010/AgentSmith

https://tracinsy.ewi.tudelft.nl/pubtrac/Genius/browser/src/main/java/agents/anac/y2010/AgentSmith
https://tracinsy.ewi.tudelft.nl/pubtrac/Genius/browser/src/main/java/agents/anac/y2010/AgentSmith

4.2. LEARNING THE OPPONENT’S STRATEGY 103

4.2 Learning the Opponent’s Strategy

In this section we will discuss how to model the opponent’s bidding strategy,
based on the proposals he makes during the negotiations. More precisely,
given the set of proposals that our agent received from the opponent until
time some time t, we aim to predict which offers the opponent will propose
later on, between time t and the deadline.

The ability to make such predictions is essential for the implementation
of an adaptive negotiation strategy, as explained in Section 3.2.2.

To formalize this, let

π1 = (2, p, ω1, t1), π2 = (2, p, ω2, t2), . . . , πk = (2, p, ωk, tk)

denote the sequence of proposals that our agent has received from its oppo-
nent and let z1, z2, . . . , zk denote their corresponding utility values, for our
agent. That is:

zj := u1(ωj)

Then our goal is to implement an algorithm that can take as its input the
sequence

(z1, t1), (z2, t2), . . . , (zk, tk)

plus some arbitrary time tk+1 in the future, and that outputs a prediction
for the corresponding utility value zk+1.

However, in general it is unlikely that we can make such a prediction
perfectly, so rather than outputting the actual value zk+1, a typical opponent
modeling algorithm would instead output a probability distribution P (zk+1)
over all the possible values of zk+1.

Many different techniques to do this have been proposed in the literature.
For example, Agent K [30], the winner of ANAC 2010, used an extrapola-
tion algorithm based on the average and standard deviation of the values
of zi. Other agents used non-linear regression (IAMhaggler [49]), or wavelet
decomposition and cubic smoothing splines (OMAC [12]). Here, how-
ever, we will only focus on the technique of Gaussian Processes (IAMHag-
gler2011 [48]).

4.2.1 Gaussian Processes

Due to the technical nature of this topic we cannot discuss Gaussian pro-
cesses in detail, so we will only give a global idea of how this technique
works. For a more detailed discussion we refer to [46] or [11].

104 CHAPTER 4. OPPONENT MODELING

The idea behind Gaussian processes is that we assume that at any given
time the probability that the opponent will propose an offer ω with utility
u1(ω) = z is given by a Gaussian distribution:

P (z) = N (z | µ, σ) =
1√
2πσ

e−
(z−µ)2

2σ2

Now, in order to be able to use this for our purposes, we first need to
determine an expression for the probability that the opponent proposes a
certain sequence of offers with utility values z1, z2, . . . , zk respectively.

If we could assume that each offer is drawn independently from the same
normal distribution, then this would be easy, as we could simply multiply
the probabilities. This would yield the following expression:

P (z1, z2, . . . , zk) =
1

(2π)k/2
· 1

σk
· e−

(z1−µ)2+(z2−µ)2+···+(zk−µ)2

2σ2

which can be rewritten using vector-notation:

P (z⃗) =
1

(2π)k/2
· 1

σk
· e−

1
2σ2 (z⃗−µ⃗)T I(z⃗−µ⃗) (4.22)

where I is the k × k identity matrix and µ⃗ = (µ, µ, . . . , µ)T is the k-
dimensional column vector containing just k copies of the number µ.

However, the offers proposed by the opponent are typically not inde-
pendent. After all, it is fair to assume that the opponent is following some
negotiation strategy that concedes over time with respect to his utility u2
and that this utility function is at least to some extent correlated with our
own utility u1.

For example, in the extreme case that the opponent follows a strictly
monotonic bidding strategy and that the negotiation domain is a split-the-
pie domain, then our agent would perceive the offers it receives from the
opponent as strictly increasing over time, i.e. z1 ≤ z2 ≤ · · · ≤ zk. So, their
values are clearly not independent.

Of course, in practice many negotiation scenarios will not be split-the-pie
domains in which the utility functions are that strongly correlated. Never-
theless, it is still reasonable to assume that there will at least be some
correlation. In fact, we have to make this assumption, because if there is no
correlation between the two utility functions at all, then there would be no
way for our agent to make any predictions based on the received proposals.
After all, the utility values of the received proposals would just appear as a
completely random sequence with no pattern whatsoever.

4.2. LEARNING THE OPPONENT’S STRATEGY 105

We will therefore assume that, in general, two consecutive proposals
πi and πi+1 will often have similar values: zi ≈ zi+1. To state this more
formally, we will assume that the closer two proposals πi and πj are to
each other in time, the stronger the correlation between the corresponding
random variables zi and zj .

Whenever a sequence of Gaussian random variables is not independent,
we can model their joint distribution by replacing the identity matrix in
Eq. (4.22) with some other matrix K (which has to be symmetric and posi-
tive semi-definite) so that the expression for the joint probability becomes:

P (z⃗) =
1

(2π)k/2
· 1

|K|1/2
· e−

1
2
(z⃗−µ⃗)TK−1(z⃗−µ⃗) (4.23)

where |K| is the determinant of K.
The fact that this this matrix indeed introduces a dependency between

each pair of variables zi and zj can be seen clearly from Figure 4.2. In this
figure we have drawn two contour plots for a Gaussian distribution over
just two variables z1 and z2. Figure 4.2a shows the case where K is just
the identity matrix, so this corresponds to Eq. (4.22). We see that for any
arbitrary value of z1, the probability distribution for z2 is maximized at the
same value z2 = 0.5 (indicated with a red line). Similarly, for any value of z2
the probability distribution for z1 is maximized at the same value z1 = 0.5.
In other words, the probability distribution for z2 does not depend on z1
and vice versa.

On the other hand, in Figure 4.2b, where we have drawn the contour
plot of a Gaussian distribution with an alternative matrix K we see that as
z1 increases, the value of z2 with maximum probability also increases (again,
indicated with a red line). That is, the larger the value of z1, the greater
the expectation value of z2.

Furthermore, note that if we use Eq. (4.23) to calculate the covariance

E
(
(zi−µ) ·(zj−µ)

)
between any two variables zi and zj then the result will

be exactly the element Ki,j of the matrix K. For this reason, K is called the
covariance matrix. From this it follows immediately that if K is the identity
matrix, then there is no covariance among any two different variables zi and
zj , which means that they are indeed independent.

The question now, is how to choose the correct matrix K. For this, we
use a so-called kernel function. A kernel function is a function κ : R2 → R
that represents how the correlation between any two variables zi and zj
depends on the times ti and tj . That is, we set:

Ki,j := κ(ti, tj) (4.24)

106 CHAPTER 4. OPPONENT MODELING

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

z1

z 2

(a) Countour plot of a multi-variate
Gaussian distribution with identity
matrix.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

z1

z 2

(b) Countour plot of multi-variate
Gaussian distribution with alterna-
tive covariance matrix.

Figure 4.2: Multi-variate Gaussian distributions.

where Ki,j is an entry of the matrix K, representing the covariance between
variables zi and zj , and ti and tj are the times of the proposals πi and πj .

Of course, we have now only replaced our original question “How do we
select the correct covariance matrix?” by a new question: “How do we select
the correct kernel function?”.

We will not go into the details of how to select the best such kernel
function. We will just mention that it should be consistent with our re-
quirement that the smaller the difference between ti and tj , the more the
two variables zi and zj should be correlated. So, this should be reflected in
the kernel function: the smaller |ti − tj |, the greater κ(ti, tj). Furthermore,
let us mention that Williams et al. [46] used a so-called Matérn kernel.

Once we have determined the covariance matrix, we know the expression
for P (z⃗). The next step, is to use this to calculate an expression for P (zk+1 |
z1, z2, . . . , zk). This is indeed the expression that we are looking for, because
it calculates the probability of some future value zk+1, given the observed
sequence z1, z2, . . . , zk.

The expression for P (zk+1 | z1, z2, . . . , zk) can be obtained directly from
the expression for P (z⃗) using straightforward, but somewhat tedious, alge-
bra. We will not go into the details of this calculation here, but the key
point is that P (zk+1 | z1, z2, . . . , zk) will again be a Gaussian distribution.
Therefore, this distribution is determined by just two parameters µ and σ,
representing the mean and standard deviation.

Note that, technically, the probability P (zk+1 | z1, z2, . . . , zk) also de-
pends on the times t1, t2, . . . , tk, of the received proposals, as well as on the
chosen future time tk+1, because they determine the covariance matrix K,

4.2. LEARNING THE OPPONENT’S STRATEGY 107

through the kernel function κ, as in Eq. (4.24). We may therefore write this
probability more correctly as P (zk+1 | π1, π2, . . . , πk, tk+1)

Finally, let us mention that instead of using all received proposals from
the opponent as their input, Williams et al. [46] divided time into a number
of time-windows and only used the proposal with highest utility from each
time window. This has the advantage that it reduces noise in the data, and
it also reduces the size of the input data, which in turn reduces the required
computation time.

4.2.2 Choosing the Optimal Target Value for an Adaptive
Negotiation Strategy

The typical use case for Gaussian processes, is to determine an optimal
target value β∗ for an adaptive negotiation strategy. Let us here explain in
more detail how that can be done.

In order to do this, we first have to select a time point tk+1 which is
close to the deadline T . This will allow us to predict the utility value of
the last offer that the opponent will propose to us. The output of our
Gaussian process algorithm will then consist of the two parameters µ and σ,
which are the mean and the standard deviation of the Gaussian probability
distribution that represents the probability that the opponent will propose
an offer ωk+1 at time tk+1 with utility zk+1:

P (zk+1 | π1, π2, . . . πk, tk+1) = N (zk+1 | µ, σ)

Now, let us suppose for a moment that we know the exact value zk+1 of
the offer ωk+1 that the opponent will propose at time tk+1, and furthermore
that we have a good approximation û2 of the opponent’s utility function,
so we can ensure that our own proposals are Pareto-optimal. In that case
we can assume that the opponent will accept any Pareto-optimal offer ω for
which u1(ω) < zk+1. After all, if, for our agent, the offer ω is worse than
the offer ωk+1 that the opponent would propose, then by Pareto-optimality,
for the opponent, the offer ω would be better than the offer ωk+1 that he
would propose. So, it is fair to assume that the opponent would be willing
to accept ω.

Of course, in reality we only have a probability distribution for zk+1, so
we can calculate, for any offer ω with utility u1(ω) = z the probability that
the opponent will accept it, by integrating over all values of zk+1 that are
greater than z. That is:

Pa(z) =

∫ ∞

z
P (zk+1 | π1, π2, . . . πk) dzk+1

108 CHAPTER 4. OPPONENT MODELING

where Pa(z) denotes the probability that ag2 would accept an offer ω with
utility u1(ω) = z.

Let us now make the pessimistic assumption that if our target value is
β, then we will indeed need to concede all the way to that value and we will
not be able to get any agreement with higher utility than that. Therefore,
our expected utility would be given by β ·Pa(β). That is, the utility β in case
of agreement, multiplied by the probability that the opponent will indeed
accept such an agreement. We can now determine our optimal target value
β∗ as follows:

β∗ = argmax
β

β · Pa(β)

4.3 Learning the Opponent’s Strategy from Pre-
vious Negotiation Sessions

COMING SOON!

Chapter 5

Game Theory

In Chapter 3 we discussed various negotiation strategies. The big question
now, is which one is the “best”. It turns out that unfortunately there is no
definitive answer to this question. Nevertheless, we may still want to inves-
tigate how close we can get to such an answer, and for that it is absolutely
essential to have a basic understanding of the topic of game theory.

Game theory, as the name indicates, deals with the analysis of games.
However, it should be understood that the notion of a ‘game’ here is much
more general than what one would normally consider a game in daily life.
Specifically, game theory applies to any scenario that involves multiple agents
whose goals are at least partially conflicting, and in which the outcome for
each agent also depends on the the actions taken by the other agents. In
particular, this means it applies to automated negotiation.

Game theory is a very large subject and it would go much too far to
go into an in-depth discussion in this book. Therefore, we will here only
explain the most basic concepts that are relevant for the rest of this book.
For a more in-depth study of game theory I recommend the book ‘A Course
in Game Theory ’ by Osborne and Rubinstein [39].

5.1 Cooperative vs. Non-Cooperative Game The-
ory

In general, in game theory it is assumed that there are two or more agents,
that each agent can perform certain actions, and that each agent chooses its
actions so as to maximize its own individual utility function. Furthermore,
it is assumed that for each agent, its utility function does not only depend
on its own actions, but also on the actions of the other agents.

109

110 CHAPTER 5. GAME THEORY

We can distinguish between two main branches of game theory, namely
cooperative game theory, and non-cooperative game theory. The difference
is that in the case of cooperative game theory it is assumed that the agents
are able to coordinate their actions, which may allow them to achieve out-
comes that are mutually beneficial. In non-cooperative game theory, on the
other hand, it is assumed that each agent chooses its actions in an entirely
individual way, without any form of explicit coordination with the other
agents.

Another way to see it, is to say that non-cooperative purely focuses
on the question which action each agent will take, while cooperative game
theory assumes that there is a kind of ‘communication layer’ superimposed
on top of the game, which allows the agents to coordinate or negotiate the
actions they will take.

It should be understood however, that even in the case of cooperative
game theory, each agent is still assumed to have its own individual utility
function and that each agent is still assumed to be purely self-interested. In
other words, an agent is only willing to cooperate with the other agents if
that yields an individual benefit to that agent. Therefore, cooperative game
theory should not be confused with distributed optimization in which all
agents share the same goal or utility function and are therefore programmed
to work together.

We can summarize the differences as follows.

� Distributed Optimization:

– All agents have the same goals.

– The agents work together to achieve their common goal.

– Example: A swarm of fire-fighting drones that aim to extinguish
a bush fire.

� Cooperative Game Theory:

– Each agent has its own individual goals, which may conflict with
the goals of the other agents.

– Agents may work together, but they only do so if that benefits
them individually.

– Example: Political parties that form coalitions to create a gov-
ernment.

� Non-Cooperative Game Theory:

5.1. COOPERATIVE VS. NON-COOPERATIVE GAME THEORY 111

– Each agent has its own individual goals, which may conflict with
the goals of the other agents.

– No cooperation or coordination between the agents at all. Each
agent chooses its actions purely individually.

– Example: a game of chess.

Automated negotiation is clearly related to cooperative game theory,
since indeed it considers agents that are aiming to find a joint solution, but
only if that increases their own individual utilities. In fact, one could see
automated negotiation as a sub-field of cooperative game theory, although
in practice the literature usually treats them as two distinct fields.

In particular, in the field of cooperative game theory one typically as-
sumes that all agents have full knowledge of each others’ utility functions,
while in automated negotiation we usually assume the agents only have lim-
ited or no knowledge about their opponents’ utility functions. Furthermore,
in automated negotiation we mainly focus on the process of how the agents
agree on some final outcome (i.e. the negotiation), while in most work on
cooperative game theory this process is entirely abstracted away and one
only focuses on the outcome of such negotiations.

Given the close relationship between automated negotiation and cooper-
ative game theory, it may come as a surprise that in this section and in the
rest of this book we are actually more interested in non-cooperative game
theory, rather than in cooperative game theory. The reason for this, is that
in order to determine which negotiation strategies are best, we need to model
the process of negotiation itself as a game. This contrasts with cooperative
game-theory, in which negotiation is considered as a process that is super-
imposed on top of a game. Therefore, if we model negotiation itself as a
game, it would be a non-cooperative game.

Within the field of non-cooperative game theory, we can further distin-
guish between two main types of games:

1. Normal-form games

2. Extensive-form games

Normal-form games are games in which all players simultaneously choose
exactly one action and then the game is over. Probably the most well-
known example of a normal-form game is ‘Paper-Scissors-Rock’. Extensive-
form games, on the other hand, are the more common type of games that
take place over multiple rounds. Examples are chess, go, and poker. We will
discuss these two types of games respectively in the following two sections.

112 CHAPTER 5. GAME THEORY

5.2 Normal-Form Games

Formally, a normal-form game is defined as follows.

Definition 19. Let n be a positive integer. Then, an n-player normal-
form game consists of:

� For each i ∈ {1, 2, . . . , n} a set of actions Ai.
� For each i ∈ {1, 2, . . . , n} a utility function ui that maps the Cartesian
product of all action sets to the set of real numbers:

ui : A1 ×A2 × · · · ×An → R

Note that in game theory the agents are typically referred to as ‘players’.
So, we will refer to each set Ai as the set of “actions of player i” and to
each utility function ui as the “utility function of player i”. Furthermore,
we may use the notation agi to refer to player i. In the rest of this section
we will mainly focus on 2-player games.

A tuple of actions, consisting of one action for each player is called an
action profile. In other words, an action profile is an element of the set
A1 ×A2 × · · · ×An.

Note that for each player, its utility function depends on the actions
chosen by all players. For example, in the case of Papers-Scissors-Rock
(with two players), each player has the same action set A1 = A2 =
{paper, scissors, rock}. The utility function u1 for player 1 could be given
by:

u1(paper, paper) = 1, u1(paper, scissors) = 0, u1(paper, rock) = 2

u1(scissors, paper) = 2, u1(scissors, scissors) = 1, u1(scissors, rock) = 0

u1(rock, paper) = 0, u1(rock, scissors) = 2, u1(rock, rock) = 1

That is, player 1 receives 2 utility ‘points’ if she wins, 0 utility points if she
loses, and 1 utility point in case of a draw. Similarly, the utility function
for player 2 can then be defined as u2(a1, a2) = 2 − u1(a1, a2), for any pair
of actions (a1, a2) ∈ A1 ×A2.

Two-player normal-form games are typically represented using so-called
pay-off matrices. That is, a matrix for which each row corresponds to an
action a1 ∈ A1, and each column corresponds to an action a2 ∈ A2, so it’s
a |A1| × |A2| matrix. Each cell of the matrix therefore corresponds to a
pair of actions a1, a2 and it contains the corresponding pair of utility values
(u1(a1, a2) , u2(a1, a2)) for the two players. For example, the payoff matrix
of Paper-Scissors-Rock is displayed in Table 5.1.

5.2. NORMAL-FORM GAMES 113

Paper Scissors Rock

Paper (1 , 1) (0 , 2) (2 , 0)

Scissors (2 , 0) (1 , 1) (0 , 2)

Rock (0 , 2) (2 , 0) (1 , 1)

Table 5.1: Payoff-matrix of the game Paper-Scissors-Rock

In this book we will always follow the convention that player 1 is the ‘row
player ’ and that player 2 is the ‘column player ’. That is, the rows of the
matrix correspond to the actions of player 1, and the columns correspond
to the actions of player 2.

5.2.1 Zero-sum Games

Note that in the game of 2-player Paper-Scissors-Rock, no matter what
actions the players choose, the sum of their respective utilities (u1 + u2)
will always be 2. In other words, the agents’ objectives are diametrically
opposed. The higher the utility for player ag1, the lower the utility for player
ag2 and vice versa. Such games are also known as constant-sum games
or, more commonly, zero-sum games. This last name comes from the
fact that we can add any arbitrary constant to the utility function of either
player, without affecting the essence of the game. Therefore, any constant-
sum game can be transformed into an equivalent game for which the sum of
the players’ utility values is always exactly zero. Games in which the sum of
the players’ utility values is not always the same are called non-zero-sum
games or general-sum games.

Many board games such as chess, checkers, or go, can indeed be seen
as zero-sum games because they either end with one player as the winner
and the other as the loser, or in a draw. So, we can assign 2 points to the
winner, 0 points to the loser, and 1 point to each player in case of a draw.
Conversely, for any 2-player zero-sum game we can say that the player that
achieved the highest utility is the ‘winner’ and the other player the ‘loser’,
or that the game ended in a draw if both players achieved the same utility.

However, it is important to understand that when we study non-zero-
sum games there is not always a clear winner or loser. For example, one
could encounter a game that has one action profile for which both players
achieve the maximum utility, while it also has one action profile for which
both players achieve the minimum utility. Therefore, in such games we
cannot say that the goal is to win the game. Instead, the goal for each

114 CHAPTER 5. GAME THEORY

player is purely to maximize its own utility value. Especially, we should
stress that in non-zero-sum games it is not the goal of the players to ‘beat’
the opponent, or to achieve more utility than the opponent.

For example, if one action profile leads to a utility of 10 for player 1 and
a utility of 5 for player 2, while another action profile yields a utility of 100
for player 1 and a utility of 200 for player 2, then player 1 prefers the second
action profile, because it yields more utility. In particular, player 1 does
not care about the fact that with the second action profile player 2 achieves
more utility than player 1.

5.2.2 Simultaneous Moves

As we mentioned above, in a normal-form game the players choose their
actions simultaneously. What we mean by this, is that each player has to
choose his or her action without knowing which actions the other players are
choosing. It does not mean that the players literally have to choose their
actions at exactly the same moment. Instead, we can imagine, for example,
that each player first secretly writes down his action on a piece of paper and
only once all players have written down their chosen actions, those actions
are revealed. While in this way the players do not literally choose their
actions at exactly the same moment, the point is that each player has to
make his choice without knowing the choices of the other players, which, for
all intents and purposes, is the same as the situation that all agents really
do choose their actions at exactly the same time.

5.2.3 Pure Nash Equilibria

Naturally, the main question any player in any game wants to answer, is
the question which action is the best action to choose. In order to study
this question we will focus on 2-player games and we will assume that each
player has full knowledge of the other player’s utility function.

If we knew which action the opponent was choosing, then this question
would be easy to answer, because then our best action would simply be the
one that maximizes our utility, given the opponent’s action. We call this
the best response to the opponent’s action.

Definition 20. Let G be some 2-player normal-form game and let a1 ∈ A1

be any action for player 1. Then, we say that an action a2 ∈ A2 for player
2 is a best response to a1 if the following holds:

∀a ∈ A2 : u2(a1, a) ≤ u2(a1, a2)

5.2. NORMAL-FORM GAMES 115

Analogously, an action a1 ∈ A1 for player 1 is a best response to some
action a2 ∈ A2 for player 2, if the following holds:

∀a ∈ A1 : u1(a, a2) ≤ u1(a1, a2)

In other words, for any action ai of player i, a ‘best response’ for player j
is an action that yields highest utility to player j, when player i chooses
action ai.

For example, in the game of ‘Paper-Scissors-Rock’, if player 1 chooses
the action ‘scissors’ then the best response for player 2 is to choose ‘rock’.

Note that the best response may not be unique, because multiple actions
may yield the same utility. Therefore, in general, for any action ai there is
a set of actions which are all best responses. We will denote this set by
BRj(ai). That is:

BR1(a2) := argmax
a

{u1(a, a2) | a ∈ A1}

BR2(a1) := argmax
a

{u2(a1, a) | a ∈ A2}

So, the phrase “aj is a best response to ai” can be formally denoted as
aj ∈ BRj(ai).

Of course, the problem is that, in principle, we do not know the op-
ponent’s action. However, to solve this, we can assume that the opponent
is rational, which may allow us to reason about what action the opponent
would choose.

In the following we will follow the same convention as in the rest of this
book, that we are implementing agent ag1 and therefore that ag2 is our
opponent.

The idea is as follows. We first pick some arbitrary action a1 ∈ A1. We
then assume that, if there is indeed a good reason for us to pick that action,
then the opponent would be able to follow that reasoning and therefore
would be able to conclude that we are picking a1. But that means that
if the opponent is rational she would now choose an action a2 that is a
best response against our action (i.e. a2 ∈ BR2(a1)). Now, assuming that
the opponent will indeed choose that action, we can change our mind, and
instead pick a new action a′1 that is a best response to that action a2. That
is, we choose a′1 ∈ BR1(a2). Now, again, we can make the assumption
that the opponent is able to reason in the same way as us, and therefore
is able to anticipate our change of mind, which allows her to also change
her mind, and pick a best response to our new choice. That is, we now
assume the opponent will actually choose some action a′2 ∈ BR2(a

′
1). If we

116 CHAPTER 5. GAME THEORY

keep reasoning like this, then two things can happen: either the two players
keep changing their actions infinitely often, or at some point they reach an
equilibrium were neither of the two players changes their mind anymore,
because they have chosen two actions that are best responses to each other.
In that case, we say they have reached a Nash equilibrium.

More precisely, we say the two players have reached a pure Nash equilib-
rium. There also exists a different kind of equilibrium that is called a mixed
Nash equilibrium, but we will discuss that later on.

Formally, a pure Nash equilibrium is a pair of actions, such that each of
the two actions is a best response to the other one.

Definition 21. Let (a1, a2) ∈ A1×A2 be any pair of actions of a two-player
normal-form game. We say it is a pure Nash equilibrium if:

a1 ∈ BR1(a2) and a2 ∈ BR2(ac1)

The importance of this is that if the game contains exactly one Nash
equilibrium, and the two players play optimally, then the action profile they
choose should be exactly that Nash equilibrium. To see this, assume the
opposite. Suppose that they choose an action profile (a1, a2), that is not a
Nash equilibrium. In particular, let us assume that a1 is not a best response
to a2. That means that player 1 could have achieved more utility if he
had chosen a different action a′1 that is a best response to a2 (i.e. a′1 ∈
BR(a2)). So, by choosing a1 player 1 did not make an optimal choice, which
contradicts the assumption that they were playing optimally.

Imagine that, before they play the game, all players of a normal-form
game have decided which action they each will play. However, suppose that
right before they reveal their chosen actions, one player changes his mind
and switches two another action, while all other players keep their decisions
unchanged. We then say that that player is making a unilateral deviation.
With this terminology the notion of a pure Nash equilibrium can be defined
alternatively as: “a strategy profile such that no agent can increase his utility
by making a unilateral deviation”.

Unfortunately, not all games have a pure Nash equilibrium. One example
is the Paper-Scissors-Rock game. If we apply our reasoning above to this
game, it is easy to see that we keep looping forever. For example, if we
initially choose ‘paper’, then our opponent will choose the best response,
which is ‘scissors’. Then, we can change our mind and choose the best
response against ‘scissors’, which is ‘rock’. Next, the opponent will change
to the best response against ‘rock’ which is ‘paper’, etcetera. Clearly, this
will continue forever.

5.2. NORMAL-FORM GAMES 117

An example of a game that does have a pure Nash equilibrium, is the
well-known Prisoner’s dilemma, which we will discuss next.

5.2.4 The Prisoner’s Dilemma

The prisoner’s dilemma is probably the most commonly used example in
game theory, because it shows the counter-intuitive result that when ev-
ery player plays optimally from his own individual point of view, the final
outcome may actually not be optimal at all.

The prisoner’s dilemma is typically explained as follows: two prisoners
are each being questioned separately by the police. They each have two
options: to confess that they committed a crime, or to deny that they did
it. If they both confess then they both have to stay in prison for 8 years.
If they both deny, then they both only have to stay in prison for 2 years.
However, if one of them denies and the other confesses, then the one who
confessed will be released from prison immediately and be free, while the
other one will have to stay in prison for 10 years.

We should stress that we are discussing this game in the context of non-
cooperative game theory, so the prisoners are not able to communicate and
each of them has to make his decision in complete isolation from the other.

This game can be displayed as the following payoff matrix.

Deny Confess

Deny (8 , 8) (0 , 10)

Confess (10 , 0) (2 , 2)

Note that the utilities here are given as 10 − x, where x is the number of
years they stay in prison. So, if a prisoner is released immediately he will
get a utility of 10. The payoff vector (8, 8) represents that they both go to
prison for 2 years, while the payoff vector (2, 2) represents that they both
go to prison for 8 years. This is because we follow the standard convention
that the players aim to maximize the utility values displayed in the matrix.

Now, the question is what the optimal strategy for each of the two prison-
ers would be. Most people who see this game for the first time would argue
that the best strategy is to play ‘deny’, because if they both choose that
action, they will both get a low punishment. However, perhaps surprisingly,
we will see that the optimal strategy is actually to play ‘confess’.

To see this, let us first imagine that player 1 is choosing to play ‘deny’.
What is now the best response for player 2? We see from the matrix that
if player 2 chooses ‘deny’ as well, then she receives a utility of 8 (2 years in

118 CHAPTER 5. GAME THEORY

prison), while if she chooses ‘confess’ she receives a utility of 10 (immediate
freedom). So, ‘confess’ is the best response.

BR2(deny) = {confess}

Next, suppose that player 1 chooses to play ‘confess’. We now see that if
player 2 chooses ‘deny’ she will get a utility of 0 (i.e. 10 years in prison),
while if she chooses ‘confess’ she will get a utility of 2 (i.e. 8 years in prison).
Again, we see that ‘confess’ is the best option.

BR2(confess) = {confess}

In other words: No matter what player 1 chooses, player 2 is always better
off if she chooses ‘confess’. Vice versa, the same holds for player 1. Player 1
is always better off by playing ‘confess’, no matter what player 2 chooses.
We therefore see that the action profile (confess, confess) is the unique pure
Nash equilibrium of this game.

From this we conclude that if both players are perfectly rational, they
would each choose to play ‘confess’ and therefore they would each go to
prison for 8 years. This may seem highly counter-intuitive, since if they
cooperated they could ensure to go to prison for only 2 years.

The problem with that cooperative solution, however, is that even if the
players could somehow make an agreement to each play ‘deny’, then, by
assumption of non-cooperative game theory, still neither of the two players
could be forced to keep their promise. So, if you agree with your opponent
to play ‘deny’, then the best thing you can do is to break your promise
and play ‘confess’ anyway. Formally speaking, we say that players cannot
commit to their actions in advance.

The reason this outcome seems so counter-intuitive, is that in real life
most situations we encounter do not follow the strict rules of non-cooperative
game theory. For example:

� In real life people are social.

– The prisoners could be friends or family that prefer to help each
other rather than to make purely selfish choices.

– People are hardwired to often be helpful and friendly, even to
strangers.

� In real life, people may fear repercussions if they betray others.
� In real life, people can commit to their actions.

– They can sign legally binding contracts.

5.2. NORMAL-FORM GAMES 119

– They may feel obliged to keep their promises as a matter of honor.

On the other hand, in non-cooperative game theory we assume:

� that the players are only interested in maximizing their own individual
utility functions,

� that each game is played in complete isolation, so actions in the current
game do not have repercussions in later games,

� that players cannot commit in advance to their actions.

Note that indeed, as per the definition of a Nash equilibrium, neither
of the two agents can increase their utility by making a unilateral devia-
tion. On the other hand, in the prisoner’s dilemma it is possible for the
players to increase their utility if they both switch from ‘confess’ to ‘deny’.
In other words, if they make a bilateral deviation. However, the definition
of a Nash equilibrium does not take such bilateral deviations into consid-
eration. The reason for this, is that we are talking about non-cooperative
game theory, which, by definition, assumes the players cannot coordinate
their actions. So, whenever a player switches to a different action, he has to
assume that this will not affect the opponent, and thus that the opponent’s
action remains unchanged.

5.2.5 Multiple Pure Nash Equilibria

Apart from the problem that not every game has a pure Nash equilibrium,
another problem is that some games actually have multiple pure Nash equi-
libria.

A simple example is the game known as ‘Battle of the Sexes’. It can be
explained as follows. The two players are a married couple and they want
to go out. They each can choose between two options: to go to a football
match or to go to a ballet performance. While the husband prefers to see the
football match, the wife prefers to go to the ballet performance. However,
for both, the most important thing is that they go together. That is, they
each prefer to choose the same activity, rather than that they each choose
a different activity. This can be summarized in the following payoff matrix:

Football Ballet

Football (2 , 1) (0 , 0)

Ballet (0 , 0) (1 , 2)

Note that no matter what the wife chooses, the best response for the
husband is to choose the same option, and similarly, no matter what the

120 CHAPTER 5. GAME THEORY

husband chooses, the best response for the wife is also to choose the same
option:

∀i ∈ {1, 2} : BRi(football) = {football} and BRi(ballet) = {ballet}

This means that there are two pure Nash equilibria:

(football , football) and (ballet , ballet)

5.2.6 Mixed Nash Equilibria

We have seen that the Paper-Scissors-Rock game does not have any pure
Nash equilibria. No matter which of the three actions we choose, if the
opponent can anticipate our action, then she can choose the best response
to that action, and we lose. So, how then do we determine our optimal
strategy? The answer is simple: by making sure that the opponent cannot
anticipate our action. Specifically, we can do that by picking an action
randomly. We call this a mixed strategy.

Definition 22. Let Ai be the set of actions of player i. Then, a mixed
strategy for player i is a probability distribution over the set Ai. That is, a
function µ : Ai → R such that

∑
ai∈Ai

µ(ai) = 1. We will denote the set of
all mixed strategies of player i byMi.

The interpretation is that the player selects each action ai with proba-
bility µ(ai). Note that even if the game only has a finite number of actions,
each player has an infinite number of possible mixed strategies.

Whenever a player does not play a mixed strategy, but instead just
deterministically chooses one specific action, then this is also known as a
pure strategy. Of course, one can say that a pure strategy is actually just
a special case of a mixed strategy, for which there is exactly one action ai
with µ(ai) = 1 and therefore µ(a′i) = 0 for all other actions a′i ∈ Ai.

A tuple (µ1, µ2, . . . , µn) consisting of one mixed strategy for each player
is called a strategy profile.

Previously, we defined the utility function of a player as a function that
assigns a utility value to every possible action profile. This can now be
extended to profiles of mixed strategies, by calculating the expected utility
ui. That is, for games with two players:

ui(µ1, µ2) :=
∑

a1∈A1

∑
a2∈A2

µ1(a1) · µ2(a2) · ui(a1, a2)

5.2. NORMAL-FORM GAMES 121

For example, in the game of Paper-Scissors-Rock, suppose that player ag1
chooses a mixed strategy µ1 in which he plays ‘paper’ with a probability of
40% and ‘scissors’ with a probability of 60%, and suppose that player ag2
chooses a mixed strategy µ2 in which she plays ‘scissors’ with a probability
of 20% and ‘rock’ with a probability of 80%, then, the expected utility of
player 1 will be:

u1(µ1, µ2) = 0.4 · 0.2 · u1(paper, scissors) + 0.6 · 0.2 · u1(scissors, scissors) +
0.4 · 0.8 · u1(paper, rock) + 0.6 · 0.8 · u1(scissors, rock)

= 0.4 · 0.2 · 0 + 0.6 · 0.2 · 1 + 0.4 · 0.8 · 2 + 0.6 · 0.8 · 0
= 0.76

while for player ag2 it will be:

u2(µ1, µ2) = 0.4 · 0.2 · u2(paper, scissors) + 0.6 · 0.2 · u2(scissors, scissors) +
0.4 · 0.8 · u2(paper, rock) + 0.6 · 0.8 · u2(scissors, rock)

= 0.4 · 0.2 · 2 + 0.6 · 0.2 · 1 + 0.4 · 0.8 · 0 + 0.6 · 0.8 · 2
= 1.24

This, in turn allows us to extend the definition of ‘best response’ to mixed
strategies.

Definition 23. Let G be some two-player normal-form game and let µ1 ∈
M1 be a mixed strategy for player 1. Then, we say that a mixed strategy
µ2 ∈M2 for player 2 is a best response to µ1 if the following holds:

∀µ ∈M2 : u2(µ1, µ) ≤ u2(µ1, µ2)

Analogously, a mixed strategy µ1 ∈ M1 for player 1 is a best response to
some mixed strategy µ2 ∈M2 for player 2, if the following holds:

∀µ ∈M1 : u1(µ, µ2) ≤ u1(µ1, µ2)

As before, we use the notation BRj(µi) to denote the set of best responses
to a mixed strategy µi.

BR1(µ2) := argmax
µ1

{u1(µ1, µ2) | µ1 ∈M1}

BR2(µ1) := argmax
µ2

{u2(µ1, µ2) | µ2 ∈M2}

Finally, we can now also generalize the concept of a pure Nash equilib-
rium to mixed strategies.

122 CHAPTER 5. GAME THEORY

Definition 24. Let (µ1, µ2) be any pair of mixed strategies of a two-player
normal-form game. We say it is a mixed Nash equilibrium if:

µ1 ∈ BR1(µ2) and µ2 ∈ BR2(µ1)

It can be shown that every pure Nash equilibrium is also a mixed Nash
equilibrium (if we consider a pure strategy to be a special case of a mixed
strategy). To prove this, one must show that if a player cannot deviate to
a better action, he also cannot deviate to a better mixed strategy. It is not
hard to see that this is indeed true, so we will leave this as an exercise to
the reader. We refer to [39] for more details.

While we have seen that not every game has a pure Nash equilibrium,
it turns out that every finite 2-player normal-form game does have at least
one mixed Nash equilibrium. A proof of this theorem can be found in [39].

Theorem 1. Every finite 2-player normal-form game has at least one mixed
Nash equilibrium.

It is relatively straightforward to determine the pure Nash equilibria of
a normal-form game. All it amounts to is to determine for each action of
either player which actions are best responses. This can be seen directly
from the pay-off matrix. Determining the mixed Nash equilibria, on the
other hand, is a computationally hard problem that you would typically
not do manually. Instead there are various algorithms for this task, such as
the Lemke-Howson algorithm [31]. A commonly used software package that
implements such algorithms is the Gambit library [43].

5.3 The Equilibrium Selection Problem

As mentioned above, our aim is to determine, for any given normal-form
game, what the optimal strategy would be for each of the players. So far,
we have only partially answered this question. Namely, we now know that
the players should be playing a Nash equilibrium (pure or mixed). Further-
more, we know from Theorem 1 that such a Nash equilibrium always exists.
However, that still leaves us with the question which Nash equilibrium to
choose if the game has multiple Nash equilibria.

This problem is known as the equilibrium selection problem. While many
solutions to this problem have been proposed, unfortunately, none of them
is widely accepted as being a fully satisfactory solution for general normal-
form games. However, there are a number of solutions to this problem that
are applicable to special cases. We will here discuss some of them. But

5.3. THE EQUILIBRIUM SELECTION PROBLEM 123

before that, we will first discuss some apparent solutions that might seem
to make sense initially, but that are actually not satisfactory.

5.3.1 Wrong Solutions to the Equilibrium Selection Problem

A naive solution to the equilibrium selection problem, would be to assume
that a player could simply flip a coin to randomly choose one of the several
equilibria and then play his strategy from that equilibrium. However, we
will see that this solution doesn’t make sense.

Suppose that a certain 2-player game has exactly two Nash equilibria:
(µ1, µ2) and (µ′

1, µ
′
2). Now, suppose that player 1 flips a coin so that he will

choose the first equilibrium with probability P and the second equilibrium
with probability 1 − P . The problem, is that this means that essentially,
player 1 is playing neither µ1 nor µ′

1, but is in fact playing an entirely differ-
ent mixed strategy, namely: P ·µ1+(1−P) ·µ′

1. And since we assume there
were only two Nash equilibria, this means that player 1 is in fact not playing
any equilibrium strategy at all. He’s playing a different mixed strategy that
may not be a best response to the opponent’s strategy. Therefore, if player
2 could reason that player 1 is playing that strategy, then player 2 could
play a best response against it, which may yield a much better outcome for
player 2 (and a much worse outcome for player 1) then if they had played
either of the Nash equilibria. Furthermore, it would mean that player 1
could improve by deviating to a different strategy and therefore that it is
currently not playing an optimal strategy.

Another idea could be that player 1 chooses a Nash equilibrium based
on some entirely different criterion that is not related to his utility function
at all. For example, for each of his potential strategies µ1 and µ′

1, he could
look at the name of the action that receives the highest probability, and
then select the strategy for which this name comes earliest in alphabetical
order. However, this solution essentially suffers from the same problem.
Since the choice of player 1 is not based on his utility function, player 2
cannot reason which strategy player 1 would choose, and therefore instead
has to guess it. Therefore, player 2 would reason that there is a 50% chance
that player 1 chooses strategy µ1 ad a 50% chance that player 1 chooses
strategy µ′

1. This means that the optimal strategy for player 2 would be to
pick the best response against 0.5 · µ1 +0.5 · µ′

1. Again, this means that the
players end up playing an entirely different strategy profile, which is neither
of the two Nash equilibria.

124 CHAPTER 5. GAME THEORY

5.3.2 Pareto-Optimality among Nash Equilibria

Perhaps the most obvious way to partially resolve the equilibrium selection
problem, is to argue that players would never choose a Nash equilibrium
that is dominated by some other Nash equilibrium.

In Section 2.3 we gave the definition of ‘domination’ and ‘Pareto-
optimality’ for offers. The same concepts can also be defined for strategy
profiles:

Definition 25. We say that a strategy profile (µ1, µ2) dominates another
strategy profile (µ′

1, µ
′
2) if:

∀i ∈ {1, 2} : ui(µ1, µ2) ≥ ui(µ
′
1, µ

′
2)

and there is at least one player for which this inequality is strict:

∃i ∈ {1, 2} : ui(µ1, µ2) > ui(µ
′
1, µ

′
2)

We say a strategy profile µ′ is dominated by µ, if µ dominates µ′. A
strategy profile (µ1, µ2) is Pareto optimal if it is not dominated by any
other strategy profile.

Clearly, if a game has two Nash equilibria and one of them yields a utility
of 10 to each player, while the other one yields a utility of 20 to each player,
then both players would choose the second one.

We therefore argue that in a game with multiple Nash equilibria, the
players would only consider choosing those that are Pareto-optimal among
the Nash equilbria.

Definition 26. We say a Nash equilibrium (µ1, µ2) is Pareto-optimal
among Nash equilibria, if it is not dominated by any other Nash equilib-
rium.

Note that we make a distinction between a Nash equilibrium being
‘Pareto-optimal ’ and being ‘Pareto-optimal among Nash equilibria’. The
first concept means that it is not dominated by any other action profile.
The second concept is much weaker because it only says that it is not dom-
inated by any other Nash equilibrium.

For example, in the prisoner’s dilemma, the Nash equilibrium
(confess, confess) is dominated by the action profile (deny, deny). There-
fore, (confess, confess) is not Pareto-optimal. However, (deny, deny) is not
a Nash equilibrium. So, while (confess, confess) is dominated by some other
action profile, it is not dominated by any other Nash equilibrium (after all,

5.3. THE EQUILIBRIUM SELECTION PROBLEM 125

it is the only Nash equilibrium) and therefore we can say that it is Pareto-
optimal among Nash equilbria.

Unfortunately, however, this solution still does not completely solve the
equilibrium selection problem, because it is perfectly possible for a game to
have multiple Nash equilibria that are Pareto-optimal among Nash equilib-
ria.

5.3.3 Symmetric Games and Symmetric Equilibria

There is another way to (partially) solve the equilibrium selection problem,
but it only applies to so-called symmetric games.

A symmetric game is a game for which it does not matter which player
you are, because the game looks exactly the same from the point of view of
either player. The game of Paper-Scissors-Rock and the prisoner’s dilemma
are both examples of symmetric games. In each of these games it clearly
does not matter whether you are ‘player 1’ or ‘player 2’, because those are
just labels. If you switch the players’ roles, nothing changes.

To keep things simple we will here only give a definition of the concept
of a ‘symmetric game’ that is actually somewhat too strict, but easier to
understand than the full definition.

Definition 27. Let G be a 2-player normal-form game. We say it is a
symmetric game if A1 = A2, and for any (a1, a2) ∈ A1 ×A2 we have:

u1(a1, a2) = u2(a2, a1) (5.1)

It is easy to see that Paper-Scissors-Rock satisfies this definition. For
example, suppose that Alice is player 1 and she plays ‘scissors’, wile Bob
is player 2 and he plays ‘rock’. Then, Alice loses so she receives 0 points.
That is, we have: u1(scissors, rock) = 0. Now, imagine that the roles are
switched, but that the players still play exactly the same actions. That is,
Bob is now player 1, but he still plays ‘rock’ and Alice is now player 2,
but she still plays ‘scissors’. Clearly, Bob still wins the game and Alice still
receives 0 points. However, because we have switched their ‘roles’, this is now
formalized as: u2(rock, scissors) = 0. Indeed, we see that it doesn’t matter
who is ‘player 1’ and who is ‘player 2’ and that we have u1(scissors, rock) =
u2(rock, scissors), which is indeed an instance of Eq. (5.1).

As we mentioned, Def. 27 is actually too strict in the sense that it requires
the two action sets A1 and A2 to be exactly equal. This means that if we just
change the names of the actions of one of the two players, then the game
will trivially fail Definition 27. For example, suppose we said that player 1

126 CHAPTER 5. GAME THEORY

still has the actions A1 = {paper, scissors, rock}, but that player 2 now has
the actions A2 = {parrot, sizzlers, rack}. The payoff matrix stays exactly
the same as in Table 5.1, but the columns are now labeled with these new
actions, while the rows are still labeled with the original actions. Since we
now have A1 ̸= A2, it would no longer be a symmetric game according to
Def. 27. Of course, this should not be the case, because the names of the
actions should not matter. A similar problem can occur if we multiply the
utility function of one of the two players by a fixed constant. Anyway, we
will not go into the details of a proper definition of ‘symmetric game’. The
given definition suffices for our purposes.

Note that to specify the payoff matrix of a symmetric game, it is sufficient
to just provide the utilities of the row-player. After all, if for some action
profile (a1, a2), you want to know the corresponding utility value u2(a1, a2)
for the column player, then you can just look for u1(a2, a1) in the table. See
Table 5.2

Paper Scissors Rock

Paper 1 0 2

Scissors 2 1 0

Rock 0 2 1

Table 5.2: Payoff-matrix for the game Paper-Scissors-Rock, with only the
utilities for the row-player. Given the knowledge that it is a symmetric
game, it is not necessary to explicitly display the utility values of the column
player. For example, if you want to know the utility of the column player
for the profile (paper, scissors), then you can just look up the utility of the
row player for the profile (scissors, paper), which we can see is 2.

While a negotiation is typically not a symmetric game, the topic of sym-
metric games is still very important for the study of automated negotiation,
as we will see later on in this book, when we discuss the evaluation of nego-
tiation strategies using ‘empirical game-theoretic analysis’.

We can now define the notion of a symmetric Nash equilibrium (for
symmetric games).

Definition 28. Let G be a symmetric 2-player normal-form game. We say
a strategy profile (µ1, µ2) for this game is a symmetric Nash equilibrium
if it is a Nash equilibrium, and it satisfies µ1 = µ2.

The following theorem is proven in [13].

5.3. THE EQUILIBRIUM SELECTION PROBLEM 127

Theorem 2. Any finite symmetric game has a symmetric Nash equilibrium.

We now claim that in a symmetric game, if the players play optimally,
they would choose a symmetric equilibrium.

The idea behind this, is that if the game is perfectly symmetrical, and
the players are perfectly rational, then, whenever player 1 reasons that some
mixed strategy µ is the optimal strategy, player 2 would come to exactly
the same conclusion, and thus they would always choose the same mixed
strategy. Therefore, the only Nash equilibria they could possibly end up
choosing, are the symmetric ones.

However, it can still happen that a symmetric game has multiple sym-
metric equilibria. In that case, we can apply the Pareto-optimality criterion
from Section 5.3.2 to make a choice among the symmetric equilibria. Note
that for any symmetric equilibrium (µ, µ) in a symmetric game, the two
players will always receive the same utility: u1(µ, µ) = u2(µ, µ). Therefore,
if we have two symmetric equilibria, with different utility vectors, then one
will dominate the other. For example, if one symmetric equilibrium yields
utility vector (20, 20) and another one yields utility vector (10, 10), then the
first one dominates the second one.

Now, a valid question would be what happens if this solution conflicts
with the solution we discussed in Section 5.3.2. That is, what happens if
a game is symmetric, but every symmetric equilibrium is dominated by a
non-symmetric Nash equilibrium. For example, suppose we have a symmet-
ric Nash equilibrium with utility vector (10, 10) and a non-symmetric Nash
equilibrium with utility vector (20, 15). According to Section 5.3.2 the play-
ers should choose the Pareto-optimal one, while we have discussed here that
the players should choose the symmetric one.

We argue that in this situation the player should choose the symmetric
Nash equilibrium. To see this, note that because the game is symmetric, we
know that there must also exist a third Nash equilibrium, with utility vector
(15, 20). This means that whenever player 1 reasons that he should choose
the equilibrium with outcome (20, 15), by the symmetry of the game, player 2
would reason that she should choose the third equilibrium, with outcome
(15, 20). Therefore, just as in Section 5.3.1 they would end up playing an
entirely different strategy profile. So, in the end, the only Nash equilibrium
they could end up playing, would be the symmetric one.

The solution to the equilibrium selection problem for symmetric games
is displayed in Algorithm 9. Unfortunately, however, this solution still does
not solve the equilibrium selection completely, even for symmetric games,
because it may still happen that some symmetric game has multiple sym-

128 CHAPTER 5. GAME THEORY

metric equilibria with exactly the same utility vector. Therefore, the last
step, in which we select the symmetric equilibrium with maximum utility
for the two players, may not yield a unique result.

Algorithm 9 Algorithm that chooses the optimal strategy for either of the
two players of any symmetric 2-player game G.
Note: we here assume the argmax operator returns a unique strategy. If this
is not the case, then this algorithm cannot solve the equilibrium selection
problem.

Input:
G ▷ The game to play (must be a symmetric game).

// Determine the set of all Nash equilibria NE of G.
1: NE ← getNashEquilibria(G)

// Determine the set of symmetric Nash equilibria SNE .
2: SNE ← {(µ1, µ2) ∈ NE | µ1 = µ2}

// Determine the strategy that maximizes the utility of the players.
// It doesn’t matter if we use u1 or u2 for this because for any symmetric
// game and any mixed strategy µ we have u1(µ, µ) = u2(µ, µ) anyway.

3: µ∗ ← argmaxµ{u1(µ, µ) | (µ, µ) ∈ SNE}

// Return the selected strategy.
4: return µ∗

5.4 Turn-taking Games

As explained above, a normal-form game is a game in which each player
makes just one move, and then the game is over. However, most games we
play in real life are not over after just one action. Typical games like chess or
poker involve multiple rounds. Such games are called extensive-form games.
To keep things simple we here only focus on one specific type of extensive-
form game in which in each turn only one player makes a move. Such games
are called turn-taking games. Again, games like chess and poker fall into
this category. On the other hand, the game of Diplomacy does not fall into
this category because in that game in each round the players choose their
moves simultaneously.

5.4. TURN-TAKING GAMES 129

5.4.1 Tuples

Before we can formally define the notion of a turn-taking game, we first need
to introduce some other mathematical concepts.

For any set X, let X∗ denote the set of all finite tuples over X. That
is:

X∗ :=
⋃
n∈N

Xn = X0 ∪X1 ∪X2 ∪X3 ∪ . . .

where Xn denotes the n-fold Cartesian product of X. That is, X1 := X,
X2 := X ×X, X3 := X ×X ×X, etcetera. In particular, note that X∗

also includes X0, which is just the singleton set containing only the empty
tuple (). In the rest of this book we will use the symbol ε to denote the
empty tuple.

For example, if X = {a, b, c}, then some examples of tuples over X
are (b), (a, a), (a, b, c), and (b, c, b, a, a, b, a). Note that tuples can have
arbitrary length (as long as they are finite), that a tuple may contain the
same element multiple times, and that the elements may appear in any
arbitrary order. Also note that the order of the elements matters. That is,
(a, b, c) is considered a different tuple than (c, b, a).

We use the symbol ◦ to denote the concatenation of two tuples. For
example (a, b, c) ◦ (d, e) = (a, b, c, d, e).

Definition 29. For any tuple x ∈ X∗ its length n, denoted |x| = n, is
defined as the integer n for which x ∈ Xn.

For example, the tuple (a, b, c) has length 3.
For any tuple x ∈ X∗ of length n and any integer m with m ≤ n, we

will use the notation x[m] to denote the m-th element of x. For example, if
x = (a, b, c) then x[1] = a, x[2] = b and x[3] = c.

Definition 30. Let x, y ∈ X∗ be two tuples with |x| < |y|. Then we say
that x is a prefix of y if there exists some tuple z such that x ◦ z = y.

In other words, if x is a tuple of length n (i.e. |x| = n), and x is a prefix
of y, then that means that x consists of exactly the first n elements of y.
For example, the tuple x = (a, b, c) is a prefix of the tuple y = (a, b, c, d, e),
because we have (a, b, c) ◦ (d, e) = (a, b, c, d, e). In particular, note that the
empty tuple is a prefix of every tuple in X∗.

Definition 31. Let Y be a set of tuples over some set X. That is Y ⊆ X∗.
Then we say that Y is prefix closed, if for any y ∈ Y and any prefix y′ of
y we also have y′ ∈ Y .

130 CHAPTER 5. GAME THEORY

For example, the set Y = {ε, (a), (b), (a, b), (a, b, c, d)} is not prefix
closed, because the tuple (a, b, c) is a prefix of (a, b, c, d) but (a, b, c) is not
contained in Y , while (a, b, c, d) is contained in Y .

On the other hand, the set Y ′ = {ε, (a), (b), (a, b), (a, b, c), (a, b, c, d)} is
prefix closed. To verify this, we just need to check for any tuple y ∈ Y ′,
except the empty tuple, that if we remove the last element of y, then the
resulting tuple y′ is also contained in Y .

Definition 32. Let Y be a set of tuples over some set X. That is Y ⊆ X∗.
We say a tuple y ∈ Y is non-terminal in Y if there exists another tuple
y′ ∈ Y such that y is a prefix of y′. On the other hand, if there is no such
tuple y′ then we say that y is terminal. The set of all terminal tuples in Y
is denoted as Y T .

For example, again let Y = {ε, (a), (b), (a, b), (a, b, c, d)}. The tuple (a)
is non-terminal in Y , because it is a prefix of (a, b). Similarly, (a, b) is
non-terminal because it is a prefix of (a, b, c, d). On the other hand, (b) is
terminal, because there is no other tuple in Y that starts with b. Similarly,
(a, b, c, d) is also terminal. The empty tuple ε = () is of course always
non-terminal, except in the case that it is the only tuple in the entire set.

5.4.2 Tree Diagrams

Any finite set of tuples that is prefix closed can be visually displayed as a tree.
The easiest way to see this, is to simply look at Figure 5.1, which displays
the tree corresponding to the set of tuples {ε, (a), (b), (a, b), (a, c), (a, c, d)}.

Formally, a tree is a connected acyclic graph, for which one of the nodes
is marked as the root. The depth of a node is the length of the unique
path from the root to that node. For any node ν with depth d, its children
are those neigbors of ν that have depth d + 1. Furthermore, its parent is
its unique neighbor with depth d− 1. A leaf node is a node that does not
have any children.

Formally, for any set X and any prefix closed set of tuples Y ⊂ X∗, the
tree-diagram of Y is a tree such that the following holds:

� There is a one-to-one correspondence between Y and the set of nodes
of the tree. We will use the notation y(ν) to denote the tuple corre-
sponding to node ν.

� The root node corresponds to the empty tuple.
� For any pair of nodes ν and ν ′ such that ν ′ is a child of ν, there
exists an element of X such that y(ν ′) can be obtained from y(ν) by

5.4. TURN-TAKING GAMES 131

b

d

c

a b

Figure 5.1: Example of a tree corresponding to a set of tuples
{ε, (a), (b), (a, b), (a, c), (a, c, d)}. The root corresponds to the empty tuple
ε. The two children of the root correspond to the tuples (a) and (b) re-
spectively. The two ‘grand children’ of the root correspond to the tuples
(a, b) and (a, c) respectively. Finally, the last node corresponds to the tuple
(a, c, d).

concatenating it with a single element of X:

∃x ∈ X : y(ν ′) = y(ν) ◦ (x)

and the edge (ν, ν ′) is labeled with x.

5.4.3 Definition of a Turn-taking Game

We are now ready to define the notion of a turn-taking game. Before we
give the formal definition, let us first explain it informally, using the game
of Tic-Tac-Toe as an example.

The game of Tic-Tac-Toe is a turn-taking game, which means that in
each turn one of the players chooses an action to play. So, in order to
define the rules of this game, we first need to specify the set of actions that
the players can choose from. In Tic-Tac-Toe choosing an action consists
in marking a symbol X or O in a 3 × 3 grid. We can formalize such an
action as a tuple (r, c, s) where r ∈ {1, 2, 3} is the row in which the symbol
is marked, c ∈ {1, 2, 3} is the column, and s ∈ {X,O} is the symbol itself.
For example, when a player puts the symbol X in the center of the grid, this
action is denoted by (2, 2,X). So, we have a set of actions A = {1, 2, 3} ×
{1, 2, 3} × {X,O}.

132 CHAPTER 5. GAME THEORY

Every time a player makes a move, the state of the game changes. There-
fore, any state of the game can be identified with the sequence of of actions
that have already been played. In other words, the set of all possible states
of the game is a subset of A∗.

For example, suppose that in the first turn player 1 plays (2, 2,X). Then,
in the second turn player 2 plays (1, 1,O), and then, in the third turn player
1 plays (1, 2,X). At that point, the state of the game is the tuple:(

(2, 2,X), (1, 1,O), (1, 2,X)
)

Of course, not every action in A is legal in every state of the game. For
example, after the first player has played (2, 2,X), the second player is not
allowed to play (2, 2,O), because the cell (2, 2) is already filled. Therefore,
the set of legal sequences of actions is only a subset of A∗. We will refer
to such legal sequences as action histories and we will denote the set of all
such histories by H.

In particular, note that H must be prefix closed. After all, the state(
(2, 2,X), (1, 1,O), (1, 2,X)

)
can only be reached if the previous state was(

(2, 2,X), (1, 1,O)
)
. In other words, if

(
(2, 2,X), (1, 1,O), (1, 2,X)

)
is le-

gal, then
(
(2, 2,X), (1, 1,O)

)
must also be legal.

Furthermore, to fully define the game of Tic-Tac-Toe, we have to specify
the goals of the respective players. This can be formalized by defining a
utility function for each player. For example, we can assign a value of 2 to
the winner, a value of 0 to the loser, and in case of a draw we can assign a
utility value of 1 to each of the players. Of course, the notion of a winner or
loser is only defined at the end of the game. Therefore, the utility functions
are defined over the set of all terminal histories.

Finally, we have to specify which player can can choose an action when.
We call the player who’s turn it is, the active player. Formally, we need
a function that maps each non-terminal history to the index of the active
player:

pl : H \HT → {1, 2, . . . , n}
where n is the number of players.

In Tic-Tac-Toe, just as in most other turn-taking games, the active
player simply alternates each turn. So, in each odd turn, player 1 is the
active player and in each even turn player 2 is the active player. That is:
pl(h) = |h| (mod 2) + 1

Whenever the current state of the game is a non-terminal history h and
it’s the turn of player i, then this player can choose any action a ∈ A such

5.4. TURN-TAKING GAMES 133

that the concatenation h ◦ (a) is legal (i.e. h ◦ (a) ∈ H). Such an action
certainly exists, because we assumed h was non-terminal. On the other
hand, if h is terminal, then, by definition, the game is over and the utility
function determines the outcome of the game.

In summary, a turn-taking game is formally defined as follows.

Definition 33. A turn-taking game for n players, consists of the following
components:

� A set A, which we call the set of actions.

� A set H, called the set of all legal action histories, which is a subset
of the set of all finite tuples over A (i.e. H ⊆ A∗), such that H is
prefix closed.

� A function pl called the active player map, that maps each non-
terminal history h ∈ H \ HT to the index of the player whose turn it
is:

pl : H \HT → {1, 2, . . . , n}

� For each i ∈ {1, 2, . . . , n} a utility function ui that assigns a utility
value for player i to each terminal history in H:

ui : HT → R

5.4.4 Game Trees

Since a turn-taking game is essentially a set of tuples that is prefix closed,
together with utility functions and an active player function, we can visually
display it as a tree. See for example the game displayed in Figure 5.2.

Note that in this case the nodes corresponding to the non-terminal his-
tories are labeled with the index of the active player, and that the nodes
corresponding to the terminal histories are labeled with the utility values of
the respective players. We will call such diagrams game trees.

In the game of Figure 5.2, each player has just one turn. In the first turn,
player 1 can choose between actions a and b. If player 1 chooses a then in
next player 2 can choose between actions c and d. Otherwise, if player 1
chooses to play b, then next player 2 can choose between actions e and f .

If the two players choose a and c respectively, then each of them will
receive a utility of 0. On the other hand, if they choose actions b and f
respectively, then player 1 will receive a utility of 5, while player 2 will
receive a utility of 30.

134 CHAPTER 5. GAME THEORY

1

2

0 , 0

c

30 , 5

d

a

2

5 , 5

e

5, 30

f

b

Figure 5.2: A game tree that visualizes a very simple 2-player turn-taking
game that only lasts for two rounds. Each edge is labeled with an action
from the game, and therefore each node corresponds to the history consisting
of all actions along the path from the root to that node. Furthermore, each
non-terminal node is labeled with the index of the active player after that
history and each terminal node is labeled with the utility values of the two
respective players.

5.4.5 Strategies

We will now define the notion of a ‘strategy’ for a turn-taking game.
Let Hi denote the set of all non-terminal histories after which player i

is the active player. That is:

Hi := {h ∈ H \ HT | pl(h) = i}

Furthermore, for any non-terminal history h, let Ah denote the set of
legal actions that the active player is allowed to choose after history h. More
formally, it is the set of actions that yield a legal history when concatenated
with h.

Ah := {a ∈ A | h ◦ (a) ∈ H}

Definition 34. For any turn-taking game, a strategy σ for player i is a
map that assigns to each history h after which agi is the active player, a
legal action for agi.

σ : Hi → A such that ∀h ∈ Hi : σ(h) ∈ Ah

In line with our earlier definitions, we refer to a tuple of strategies
(σ1, σ2, . . . , σn), one for each agent, as a strategy profile.

In the example game of Figure 5.2, there is only one history after which
player 1 is the active player, namely the empty history (i.e. at the beginning

5.4. TURN-TAKING GAMES 135

of the game). Therefore his strategy is entirely determined by the action he
chooses at the start of the game. Since he can choose between two actions,
a and b, he also only has a total of two strategies, defined by σ(ε) = a and
σ(ε) = b, respectively.

On the other hand, for player 2 there are two possible histories after
which she needs to choose an action. Namely after the history (a) and after
the history (b). So, to choose a strategy, she has to make two choices: what
to do after history (a) and what to do after history (b). For each of these
two histories she has two actions to choose from, so she has 22 = 4 possible
strategies:

1. σ(a) = c, σ(b) = e
2. σ(a) = c, σ(b) = f
3. σ(a) = d, σ(b) = e
4. σ(a) = d, σ(b) = f

In general, if there are m histories after which it is your turn, and after
each of these histories you have exactly n possible actions, then you have
nm possible strategies (although in general the number of legal actions may
be different after each history).

Note that once every player has chosen a strategy, and each player follows
his chosen strategy throughout the game, then the evolution of the game is
completely fixed, so the terminal state in which the game will end will be
fixed.

For example, in the case of Tic-Tac-Toe, in the first round player 1 will
play the action given by σ1(ε). Let’s say he chooses the center square,
so we have: σ1(ε) = (2, 2,X). Next, player 2 plays the action given by

σ2

(
(2, 2,X)

)
. Let’s say that this is σ2

(
(2, 2,X)

)
= (1, 1,O). This continues

until a terminal history is reached.

1. Player 1 chooses action σ1(ε) = (2, 2,X).
2. Player 2 chooses action σ2((2, 2,X)) = (1, 1,O).
3. Player 1 chooses action σ1((2, 2,X), (1, 1,O)) = (1, 2,X).
4. Player 2 chooses action σ2((2, 2,X), (1, 1,O), (1, 2,X)) = (3, 2,O).
5. etcetera...

Let σ⃗ = (σ1, σ2, . . . , σn) be a strategy profile. Then we use the notation
hσ⃗ to denote the unique terminal history generated by this strategy profile.
Formally, it is defined as the unique terminal history that satisfies:

hσ⃗ :=
(
a1 , a2 , a3 , . . . , ak

)

136 CHAPTER 5. GAME THEORY

where:

aj :=

{
σ1(ϵ) if j = 1

σi(a1 , a2 , . . . , aj−1) if j > 1

with i := pl(a1, a2, . . . , aj−1)

Furthermore, we may use the notation ui(σ1, σ2, . . . , σn) or ui(σ⃗) as a
shorthand for ui(hσ⃗).

5.4.6 Non-credible Threats

Just like in our section about normal-form games, the main question we aim
to answer is how to find the optimal strategy for each player. We will first
explore a naive potential solution to this problem, which will turn out to be
wrong.

The idea behind this wrong solution is as follows: for any given turn-
taking game Γ we can consider the set of all possible strategies for player i,
which we will denote by Si. As mentioned before, if each player chooses a
strategy, this will uniquely determine a terminal history hσ⃗, and therefore it
will uniquely determine a tuple of utility values (u1(hσ⃗), u2(hσ⃗), . . . , un(hσ⃗)),
which we may denote as (u1(σ⃗), u2(σ⃗), . . . , un(σ⃗)). We can then define the
notion of a pure Nash equilibrium for a turn-taking game in an analagous
manner as for normal-form games.

Definition 35. Let Γ denote a two-player turn-taking game and let σ1 and
σ2 denote two strategies for player 1 and player 2, respectively. Then, we
say that σ1 is a best response against σ2 if:

∀σ ∈ S1 : u1(σ, σ2) ≤ u1(σ1, σ2)

and similarly, we say that σ2 is a best response against σ1 if:

∀σ ∈ S2 : u2(σ1, σ) ≤ u2(σ1, σ2).

We say a pair of strategies σ1, σ2 is a pure Nash equilibrium of the turn-
taking game Γ, if σ1 is a best response against σ2 and σ2 is a best response
against σ1.

Another way to look at this, is to say that each turn-taking game corre-
sponds to a normal-form game. That is, given the n-player turn-taking game
Γ we can define a corresponding n-player normal-form game G as follows:

5.4. TURN-TAKING GAMES 137

ce cf de df

a (0 , 0) (0 , 0) (30 , 5) (30 , 5)

b (5 , 5) (5 , 30) (5 , 5) (5 , 30)

Table 5.3: The pay-off matrix corresponding tot the game of Figure 5.2

� For each i ∈ {1, 2, . . . , n} the set of actions AG
i of player i in G is

exactly the set of strategies Si for player i in Γ. That is:

AG
i := Si

� For each i ∈ {1, 2, . . . , n} the utility function uGi of player i in G is
defined as

uGi (σ1, σ2, . . . , σn) := ui(h(σ1,σ2,...,σn))

where the utility functions ui on the right-hand side are the utility
functions of Γ.

It should now be clear that the pure Nash equilibria of the turn-taking
game Γ conincide exactly with the corresponding pure Nash equilibria of
the normal-form game G.

In principle, we could now also define a mixed Nash equilibrum of Γ to
be exactly mixed Nash equilibrum of G. However, there is no reason to
consider such mixed equilibria, because, as we recall from Section 5.2.6, the
purpose of a mixed strategy is to be unpredictable to your opponent. But
that doesn’t work in a turn-taking game, because in each turn, the active
player already knows what action the opponent has chosen in the previous
turn, anyway.

Now that we have re-interpreted the turn-taking game Γ as a normal-
form game G, one might think that the optimal solution for each player is
to choose a strategy σi such that the strategy profile (σ1, σ2, . . . , σn) forms
a Nash equilibrium of G. However, we will show that this solution is not
satisfactory. This is demonstrated with the game displayed in Figure 5.2.
As explained above, in this game player 1 has two possible strategies, cor-
responding to the actions a and b, and player 2 has four possible strategies,
which we will here denote as ce, cf , de and df respectively. So, we can
model this game as a 2 × 4 normal-form game, of which the payoff matrix
is displayed in Table 5.3.

Note that this game has three pure Nash equilibria:

138 CHAPTER 5. GAME THEORY

1. Actions: (a , de) utilities: (30 , 5)

2. Actions: (a , df) utilities: (30 , 5)

3. Actions: (b , cf) utilities: (5 , 30)

We will argue that the third Nash equilibrium is, in a certain sense, un-
realistic. To see that it is a Nash equilibrium indeed, first note that in
this strategy profile player 2 receives the maximum utility she can possibly
achieve, so indeed she cannot benefit from any deviation. Furthermore, note
that if player 1 were to deviate to action a, then the resulting action profile
would be (a, cf), which means that player 1 would play action a, followed by
player 2 playing action c. The resulting utility vector would then be (0 , 0),
so player 1 does not benefit from any deviation either.

However, this all depends on the assumption that player 1 indeed makes
a unilateral deviation. The problem, is that if player 1 would indeed switch
to action a, then it would be highly unlikely that player 2 would still stick
with strategy cf . After all, playing c after a is essentially a form of ‘suicide’
by player 2. In principle, player 2 could play d and obtain 5 points, but
instead she plays c yielding 0 points to herself.

This problem occurs because, as explained in Section 5.2.4, the definition
of a Nash equilibrium only takes unilateral deviations into consideration.
This makes sense if the game was truly a normal-form game in which each
player has to fully commit to its own strategy without observing the actions
of the opponent. But in this case we are playing a turn-taking game. This
means that if player 1 deviates to strategy a, then player 2 will observe that
player 1 plays action a, which means that player 2 now has the possibility
to also change her strategy, based on that observation. Indeed, if she is
rational, she would also deviate and choose action d instead of action c.
Therefore, in turn-taking games it is not enough to only consider unilateral
deviations, and thus the concept of a Nash equilibrium is too weak.

We say that the third Nash-equilbrium in our example is based on a
so-called non-credible threat. It is as if player 2 is saying to player 1: “If
you play action a then I will play action c and you will end up with 0
utility. Therefore, you’d better play action b”. This threat is not credible,
because playing action c does not only hurt player 1, but also player 2
herself. Therefore, player 1 could simply ignore this threat and play action
a anyway, knowing that player 2 is rational and therefore would not follow
through with her threat but play action d instead.

From this, we conclude that the concept of a Nash equilibrium is not
satisfactory for turn-taking games, because some Nash equilibria may be
based on non-credible threats. Therefore, we need a refined solution concept

5.4. TURN-TAKING GAMES 139

that only considers those Nash equilibria that do not involve such non-
credible threats.

5.4.7 Subgame Perfect Equilibria

We will now discuss an alternative solution concept, known as the the ‘sub-
game perfect equilibrium’, which is widely regarded as the ‘correct’ solution
concept for turn-taking games.

To explain this concept, we first need to define the notion of a subgame.
Informally, for any turn-taking game Γ and any given non-terminal history h
of that game, the subgame of Γ at h is exactly the same as Γ, except that it
doesn’t start from the same initial state as Γ, but rather it starts from some
non-empty history h of Γ. In other words, it is as if we start somewhere in
the middle of the game.

For example, let Γ be the game of Tic-Tac-Toe, and let h be the history
given by:

h =
(
(2, 2,X), (1, 1,O), (1, 2,X)

)
Then the subgame of Γ at h follows the same rules as ordinary Tic-Tac-Toe,
except that the game does not start from an empty grid, but rather starts
from the state:

O X

X

This can be formalized as follows.

Definition 36. Let Γ be a turn-taking game and let H denote the set of
histories of that game. Furthermore, let h ∈ H \ HT be any non-terminal
history of G. Then the subgame of Γ at h is a turn-taking game, denoted
Γh, such that its histories (denoted Hh) are exactly those histories in H that
have h as a prefix.

Hh = {h′ ∈ H | h is a prefix of h′}

The active player function and the utility functions of Γh are just the same
as those of Γ, but restricted to the set Hh.

Note that any strategy for the game Γ can naturally be interpreted as a
strategy for the game Γh as well, simply by restricting it to the histories Hh

of Γh.

140 CHAPTER 5. GAME THEORY

Definition 37. Let Γ be an n-player turn-taking game and (σ1, σ2, . . . , σn) a
strategy profile for this game. We say that this strategy profile is a subgame-
perfect equilibrium if it is a Nash equilibrium on all subgames of Γ.

The proof of the following theorem can be found in [39].

Theorem 3. Every finite turn-taking game has a subgame perfect equilib-
rium.

Let us now try to find the subgame-perfect equilibria of our example
game from Figure 5.2. First note that that Definition 37 implies that ev-
ery subgame-perfect equilibrium of a turn-taking game Γ is also a Nash
equilibrium of Γ. After all, by definition it has to be a Nash equilibrium
on all subgames of Γ, which includes Γ itself. Since we already know the
Nash equilibria of Γ, namely (a, de), (a, df) and (b, cf), we can restrict our
attention to those three strategy profiles.

Next, let us look at the subgame Γ(a) defined by the history (a). In this
subgame there is only one player, namely player 2, who can choose between
actions c and d. Action c will yield a utility of 0 to player 2 and action d
will yield her a utility of 5, so she would choose action d. Therefore, the
strategy profile (b, cf), is not a Nash equilibrium on the subgame Γ(a), since
it prescribes that player 2 would choose action c instead of d.

Finally, let us look at the subgame Γ(b) defined by the history (b). Again,
in this subgame player 2 is the only player, and this time she can choose
between actions e and f . Action e will yield a utility of 5 to player 2 and
action f will yield her a utility of 30, so she would choose action f . Therefore,
the strategy profile (a, de), is not a Nash equilibrium on the subgame Γ(b),
since it prescribes that player 2 would choose action e instead of f .

In conclusion, we see that the strategy profile (a, df) is the only subgame-
perfect equilibrium of our example game, because indeed it forms a Nash
equilibrium on all three subgames of Γ (that is, Γ(a), Γ(b), and Γ itself).

5.4.8 Non-deterministic Turn-taking Games

Games like chess or Tic-Tac-Toe are completely deterministic. However,
many other games, such as backgammon or poker involve randomness be-
cause players need to throw dice or shuffle cards.

A common way to formally model non-deterministic games is to intro-
duce an extra player to the game, which is often called ‘nature’. The idea
is that, unlike the other players, nature does not have a utility function and
always selects its actions randomly. For example, whenever a 6-sided die is

5.4. TURN-TAKING GAMES 141

thrown, we say it is nature’s turn and that nature will randomly choose an
action a ∈ {1, 2, 3, 4, 5, 6}.
Definition 38. A non-deterministic turn-taking game for n players,
consists of the following components:

� A set A, which we call the set of actions.
� A set H, called the set of all histories, which is a subset of the set of
all finite tuples over A (i.e. H ⊆ A∗), such that H is prefix closed.

� A function pl called the active player map, that maps each non-
terminal history h ∈ H \ HT to the index of the player whose turn it
is, or to 0, representing ‘nature’:

pl : H \HT → {0, 1, 2, . . . , n}
� For each i ∈ {1, 2, . . . , n} a utility function ui that assigns a utility
value for player i to each terminal history in H:

ui : HT → R
� For each history h such that pl(h) = 0, a probability distribution Ph

over the set Ah of legal actions after h.

Note that we still refer to this game as an n-player game, even though
it technically has n+ 1 players, including nature. This is of course because
we don’t want to count ‘nature’ as a real player.

In an n-player non-deterministic turn-taking game, it no longer holds
that any n-tuple of strategies σ⃗ yields a unique terminal history, because
the terminal history now also depends on the random choices made by na-
ture. Instead, however, each n-tuple of strategies σ⃗ leads to a probability
distribution P (h | σ⃗) over the set of all terminal histories h ∈ HT . This
means that, for any player i and any strategy profile σ⃗, we can only calcu-
late an expected utility ui(σ⃗):

ui(σ⃗) :=
∑
h∈HT

P (h | σ⃗) · ui(h)

In order to define the notion of an ‘optimal’ strategy, we can now follow
the same procedure as for deterministic turn-taking games, except that we
need to define everything in terms of the expected utility functions. That is,
a non-deterministic turn-taking game Γ corresponds to a normal-form game
G, where the actions of G are exactly the strategies of Γ and the utility
functions of G are exactly the expected utility functions of Γ. Then, the
pure Nash equilibria of Γ are defined as the pure Nash equilibria of G and a
subgame perfect equilibrium of Γ is defined as a strategy profile that forms
a Nash equilibrium on every subgame of Γ.

142 CHAPTER 5. GAME THEORY

5.5 Turn-taking Games with Imperfect Informa-
tion

Another property that many games satisfy, but that we haven’t discussed
yet, is the property of imperfect information. This means that during the
game the players do not have full knowledge of the state of the game, or of
the actions played by the other players. Typical examples of such games are
card games, such as poker, where each player can only see his own cards but
not the cards in the hands of the other players.

To model the notion of a turn-taking game with imperfect information,
we assume that whenever a player plays an action, this action is not seen
by the other players. Instead, every player receives a signal that may or
may not reveal some (limited) information about which action was played.
For example, imagine the players are playing a card game, and imagine that
player 1 discards one of his cards, say, his ace of spades. So, while player 1
is playing the action (discard , Ace,♠), the other players will only observe
the signal (discard). From this signal, the other players will understand
that player 1 discarded a card, but they will not be able to tell which card
player 1 was discarding.

In order to formalize this, we will assume that the game has a predefined
set of possible observations (or ‘signals’) O and that each player has a so-
called observation function fobs

i : H → O∗ that maps each legal action
history to a sequence of observations for that player.

For example, suppose the current state of some game is given by a his-
tory (a1, a2, a3), but player 1 has received the following sequence of obser-
vations: fobs

1 (a1, a2, a3) = (o1, o2, o3). Then, after player 2 plays action a4,
player 1 will receive some observation o4, so we have fobs

1 (a1, a2, a3, a4) =
(o1, o2, o3, a4). Typically, fobs

1 would be a non-invertible function, so just
from the observations (o1, o2, o3, o4) the player would not be able to deduce
the actual actions (a1, a2, a3, a4) that have been played. In other words, at
any point during the game, a player will, in general, not be aware of the his-
tory of actions that have so far been played, but instead will only be aware
of the sequence of observations he or she has so far received. Also note that
each player has its own individual observation function, so each player may
receive different observations.

Definition 39. Let H be some set of action histories and O be some set of
observations, then an observation function fobs

i : H → O∗ is a function
that maps every possible history to a tuple of observations, such that for any
pair of histories h, h′ ∈ H where h is a prefix of h′, we also have that fobs

i (h)

5.5. TURN-TAKING GAMES WITH IMPERFECT INFORMATION 143

is a prefix of fobs
i (h′).

We will refer to fobs
i (h) as the observed history of agent i and we may

sometimes use the notation hoi as a shorthand for fobs
i (h).

Note that this definition allows for the possibility that a player some-
times may not receive any observation at all, when another player plays
an action. For example, we could have something like: fobs

1 (a1, a2, a3) =
fobs
1 (a1, a2, a3, a4). This means that when player 2 plays action a4, player 1
will not even be aware that player 2 played any action at all.

With these definitions we can now formally define the notion of a turn-
taking game with imperfect information.

Definition 40. A turn-taking game with imperfect information (for
n players) is a turn-taking game together with a set of possible observa-
tions O and for each player agi an observation function fobs

i : H → O∗.
Furthermore, apart from the active-player function, pl, each player agi also
has its own individual active-player function pli : O

∗ → {1, 2, . . . , n, ?} which
must satisfy:

∀h ∈ H ∀i ∈ {1, 2, . . . , n} : pli(f
obs
i (h)) = i if and only if pl(h) = i

The last constraint in this definition ensures that, even though the play-
ers do not have full information about the current state of the game, each
player is still able to correctly determine whether or not it is his turn to
make a move, based only on his own observations. Technically, we should
also include similar constraints to ensure the players always have full knowl-
edge of their legal actions and their utility functions. However, we will skip
that to avoid overcomplicating things.

Furthermore, note that we have included the symbol ‘?’ in the codomain
of the functions pli. This symbol represents the case that player i does not
know whose turn it is.

Now, a strategy for a turn-taking game with imperfect information can
be defined as a function that maps observation histories to actions.

Definition 41. Let Γ be a turn-taking game with imperfect information.
Furthermore, let Oi denote the set of all possible observed histories after
which it is player i’s turn:

Oi := {o⃗ ∈ O∗ | pli(o⃗) = i}

Then, a strategy for player i is a map that assigns to each observed history
o⃗ after which agi is the active player, a legal action for agi.

σ : Oi → A such that ∀h ∈ Hi : σ(fobs
i (h)) ∈ Ah

144 CHAPTER 5. GAME THEORY

This definition implies that a player can only choose his actions based
on the observations that he has seen, rather than on the actual actions that
have been played. This represents the fact that in general the player doesn’t
know exactly which actions have been played, and that the ‘observations’
are indeed the only thing the player observes.

Of course, in most games a player would at least be able to fully observe
his own actions. This means the observation made by the active player
would typically simply be the action itself.

Furthermore, note that a turn-taking game with perfect information (i.e.
a game such as chess or go where all the players do have a full view of all
the players’ actions), can be seen as a special case of a game with imperfect
information, where each observed history is just the full history itself:

∀h ∈ H ∀i ∈ {1, 2, . . . , n} : fobs
i (h) = h

The question how to determine the optimal strategy profile for games
with imperfect information is, however, a lot more difficult to answer than
for ordinary turn-taking games. We will just comment that the commonly
accepted solution concept for such games is known as the sequential equilib-
rium, without going into detail about how it is defined. For more information
about this topic we refer to [39].

5.6 Automated Negotiation as a Game

Now that we have discussed the basic principles of game theory, we can
finally come back to the topic of automated negotiation, and discuss in
what sense it is a game.

The idea is essentially simple: each negotiating agent is a player of the
game and the actions they can play are exactly the negotiation actions as
defined in Definition 1. However, since each action is followed by a small
unpredictable delay, due to network latency, it is a non-deterministic game
and since this delay itself cannot be observed, it is also a game of imperfect
information.

So, in this section we will formally define, for any negotiation domain D,
a corresponding non-deterministic turn-taking game with imperfect informa-
tion for 2 players, denoted ΓD. Note that essentially we are just repeating the
definition of a bilateral negotiation under the alternating offers protocol that
we already gave in Chapter 2, but this time we are using game-theoretical
terminology.

5.6. AUTOMATED NEGOTIATION AS A GAME 145

5.6.1 Actions

The actions of the two players in the game ΓD are exactly the negotiation
actions as defined in Def. 1. We use the notation AD

i to refer to the set of
negotiation actions for player i. That is:

AD
1 := {1} × {p, a} × Ω× R+

AD
2 := {2} × {p, a} × Ω× R+

However, since it is a non-deterministic game, we also need an extra
player called ‘nature’, as explained in Section 5.4.8. Every time after one of
the two real players has submitted a negotiation action, it is nature’s turn
to “choose” a random delay for the message to arrive at the other agent.
This delay can be any positive real number, so the set of actions for nature
is the set of positive real numbers R+.

So, in total, the set of actions A of the game ΓD is:

A = AD
1 ∪AD

2 ∪ R+

5.6.2 The Active Player Map

Since we are modeling the alternating offers protocol, the agents’ turn to
make a proposal will alternate between players 1 and 2. However, since each
negotiation action is followed by a random ‘delay’, every turn in which one
of the two players chooses an action has to be followed by a turn for nature
to choose the delay. Therefore, the game has the following turn-taking
structure:

Player 1, nature, player 2, nature, player 1, nature, player 2, nature, etc...

Formally, we can define this as follows:

pl(h) =


1 if |h|(mod 4) = 0

2 if |h|(mod 4) = 2

0 otherwise (i.e. |h| is odd).

where h is any tuple over the set of actions A, i.e. h ∈ A∗.

Note that we here follow the convention that it is always player 1 that
starts the negotiation (unlike in some of the previous sections in which we
followed the convention that player 1 is ‘our’ agent).

146 CHAPTER 5. GAME THEORY

5.6.3 The Set of Legal Histories

The set of legal histories of ΓD is exactly the set of negotiation histories as
defined by Definitions 2 and 3.

We can define it recursively. That is, let h′ be any legal history, then we
can define the criteria that an action a ∈ A would need to satisfy in order
for the history h := h′ ◦ (a) to be legal as well. Then, given that the empty
history ε is legal, we can construct all other legal histories.

Suppose the current state of the game is given by some history h′. If, in
this state, it is player 1’s turn (i.e. pl(h′) = 1), then she can either propose
an offer or accept an offer. That is, she can play an action of the form
(1, p, ω, t) or (1, a, ω, t). In other words, she can choose an action a from the
set AD

1 . And analogously for player 2. On the other hand, when it is nature’s
turn (i.e. pl(h′) = 0), nature can select any positive number a ∈ R+.

Formally, this means that an action a is only legal in state h′ if the
following conditions hold:

� if pl(h′) = 1 then a ∈ AD
1

� if pl(h′) = 2 then a ∈ AD
2

� if pl(h′) = 0 then a ∈ R+

Furthermore, there are a number of other constraints that must be satisfied
as well.

Specifically, in order for the numbers tj and ϵj to be interpretable as
times we have to impose the condition that, for any index j the number
tj+1 must be larger than tj + ϵj . That is, if (ik, ηk, ωk, tk) and ϵk are the last
two actions of the history h′, and a = (ik+1, ηk+1, ωk+1, tk+1), then we must
have:

tk + ϵk < tk+1

In addition, recall that the definition of the AOP specifies that an agent
can only accept the last offer proposed by the other agent. That is, we must
have:

if ηk+1 = a then ωk = ωk+1

Finally, the history h′ is terminal (meaning that there is no action a
such that h′ ◦ (a) is legal), if and only if its length is an even number (i.e.
|h′|(mod 2) = 0) and at least one of the following holds:

� tk + ϵk ≥ T
� k = N
� ηk = a

5.6. AUTOMATED NEGOTIATION AS A GAME 147

The condition that the length has to be an even number, means that
the negotiations have finished only after ‘nature’ has made its move, which
means that the last propose- or accept-message must have arrived at its
recipient.

5.6.4 The Observation Functions

Suppose we have the following history:

h =
(
(1, p, ω1, t1), ϵ1, (2, p, ω2, t2), ϵ2, (1, p, ω3, t3), ϵ3, (2, p, ω4, t4), ϵ4, . . .

)
As explained in Section 2.2.2, whenever player 1 proposes an offer, he will

only be aware of the time t at which he proposed it, but he will not know how
much time ϵ it takes for that message to arrive at player 2, and therefore he
will not know the time t+ ϵ at which player 2 receives it. Similarly, player 2
will not be able to observe the time t at which the message was sent, nor
the delay ϵ, but will only observe the time t + ϵ at which she receives the
message.

Therefore, the observed history for player 1 looks as follows:

fobs
1 (h) =

(
(1, p, ω1, t1), (2, p, ω2, t2 + ϵ2), (1, p, ω3, t3), (2, p, ω4, t4 + ϵ4), . . .

)
and for player 2:

fobs
2 (h) =

(
(1, p, ω1, t1 + ϵ1), (2, p, ω2, t2), (1, p, ω3, t3 + ϵ3), (2, p, ω4, t4), . . .

)
That is, the set of observations of ΓD is just the set of negotiation actions:

O = AD
1 ∪AD

2

Formally, let oij denote the j-th observation received by player i, so we
have:

fobs
i (h) = (oi1, o

i
2, o

i
3, . . . , o

i
k)

Then, if (ij , ηj , ωj , tj) denotes the j-th negotiation action of h, each oij must
satisfy:

oij =

{
(ij , ηj , ωj , tj) if i = ij

(ij , ηj , ωj , tj + ϵj) if i ̸= ij

148 CHAPTER 5. GAME THEORY

5.6.5 The Individual Active-Player functions

Recall that for a game of imperfect information, besides the active player
function pl, we also need to define an individual active-player function pli,
representing each player’s knowledge about whose turn it is.

Note that when player 1 proposes an offer, then directly after this action,
he knows that it is now the turn of ‘nature’, until the message has arrived,
after which it will be player 2’s turn. However, since player 1 cannot observe
the duration of the delay, he will not know when exactly it stops being
nature’s turn and when it starts being player 2’s turn. In other words,
player 1 will typically not know whose turn it is, until it is his own turn.
And the same holds of course for player 2.

So, if hoi denotes the observed history of player i (i.e. hoi := fobs
i (h)),

then:

pli(h
o
i) =

{
i if pl(hoi) = i

? otherwise

5.6.6 The Utility Functions

The utility functions of the game ΓD are defined in terms of the utility
functions of the negotiation domain D. However, the utility functions of the
game are defined over the set of terminal histories.

If the negotiation ended with an acceptance that arrived before the dead-
line, then each player receives their respective utility value ui(ωk) corre-
sponding to the accepted offer ωk. Otherwise, each player i receives his
reservation value rvi.

Formally, let h be a terminal history, and let (ik, ηk, ωk, tk) denote the
last negotiation action of h. Then:

ui(h) =

{
ui(ωk) if ηk = a and tk + ϵk < T.

rvi otherwise

where the ui on the left-hand side is a utility function of the game ΓD and
the ui on the right-hand side is a utility function of the negotiation domain
D. Furthermore rvi is the reservation value of player i of negotiation domain
D.

5.6.7 Formal Definition

We can now put all this together into the formal definition of the game ΓD.

5.6. AUTOMATED NEGOTIATION AS A GAME 149

Definition 42. Let D be a bilateral negotiation domain with offer space
Ω. Then a negotiation over this domain, according to the alternating of-
fers protocol, with deadline T and maximum number of rounds N , can be
modeled as a non-deterministic turn-taking game with imperfect information
ΓD, defined as follows:

� The set of actions A of the game ΓD is defined as in Section 5.6.1.

� The active player map pl of ΓD is defined as in Section 5.6.2.

� The set of legal histories H of ΓD is defined as in Section 5.6.3.

� The observation functions fobs
i of ΓD are defined as in Section 5.6.4.

� The individual active-player functions pli of ΓD are defined as in Sec-
tion 5.6.5

� The utility functions ui of ΓD are defined as in Section 5.6.6.

Now that we have formalized negotiation using the terminology of game-
theory, we would like to apply techniques from game theory to determine
the optimal negotiation strategy. Unfortunately, however, this turns out
extremely difficult for several reasons.

The first reason, is that most techniques from game theory assume that
the players have full information about each others’ utility functions. An
assumption that often does not hold in automated negotiation.

A second reason, is that we had to model negotiation as a turn-taking
game with imperfect information. This means that to find the optimal
strategy profile, we would need to determine the sequential equilibria of ΓD,
which is known to be an extremely hard problem to solve, even for very
simple games. We therefore have to lower our expectations, and ignore the
fact that the agents are not able to observe the delay times. If we pretend
that they do know this information, then we can treat the game as if it was
as a turn-taking game with perfect information, so we can try to determine
its subgame-perfect equilibria.

A third reason, is that even if we assume that the agents could somehow
observe the delays of past messages and therefore treat the game as a turn-
taking game with perfect information, it would still very difficult to find its
subgame-perfect equilibria. This is because in order to play optimally, they
would also have to be able to deal with the randomness of the delays of
future messages. That is, the agents would still have to deal with the fact
that it is a non-deterministic game. While in general there are techniques
to deal with this, the problem is that in our case the random choices ϵj of
nature can take an infinite number of possible values, which makes it hard
to apply any well-known techniques.

150 CHAPTER 5. GAME THEORY

For these reasons, the best result we can expect to obtain here, is to
find the ordinary Nash equilibria of ΓD, when regarded as a game of perfect
information, and under the assumption that we know the utility functions
and reservation values of both players.

While the assumption of full knowledge of both agents’ utility functions
and reservation values may be unrealistic in many real-life negotiation sce-
narios, it does allow us to determine a theoretical upper bound to what an
agent could achieve in the ideal case that it had a perfect opponent modeling
algorithm. In other words, it can be used in a laboratory setting to compare
a real negotiation algorithm with a theoretically optimal one.

5.6.8 Nash Equilibria of a Negotiation

In this section we will show that the game ΓD typically has many pure Nash
equilibria.

As explained above, ideally, we would like to find the subgame-perfect
equilibria, or even the sequential equilibria, of the game ΓD. However, since
this is very hard, we will instead just try to determine its ordinary Nash
equilibria. We could then hope to find that this game has only one Nash
equilibrium, which would then automatically have to be its subgame-perfect
equilibrium. Unfortunately, however, it turns out that this is typically not
the case. In fact, the following theorem shows that a negotiation domain
D typically has many Nash equilibria: at least one for every offer that is
Pareto-optimal and individually rational.

Theorem 4. Let D be a bilateral negotiation domain with a finite offer space
Ω and let T be the deadline for the negotiations. If T is sufficiently large then
for every offer ω ∈ Ω that is Pareto-optimal and individually rational, there
exists a pair of negotiation strategies (σ1, σ2) that form a Nash equilibrium.
This pair will lead to ω as the final agreement of the negotiations, or another
offer ω̂ with exactly the same utility vector (i.e. ∀i ∈ {1, 2} : ui(ω) = ui(ω̂))

Proof. Let ω be any arbitrary Pareto-optimal and individually rational of-
fer. Given ω, let σ1 be a time-based strategy based on Eq. (3.1) or Eq. (3.3)
and with an aspiration function defined by Eq. (3.5) with target value
β1 = u1(ω). Similarly, let σ2 be a time-based strategy, defined by the same
equations, and with target value β2 = u2(ω).

We will first show that this strategy profile indeed leads to the offer ω
(or equivalent offer ω̂) being the accepted agreement. To prove this, note
that for any other offer ω′ one of the following must hold:

1. ω′ dominates ω.

5.6. AUTOMATED NEGOTIATION AS A GAME 151

2. u1(ω
′) < u1(ω)

3. u2(ω
′) < u2(ω)

4. u1(ω
′) = u1(ω) and u2(ω

′) = u2(ω).

However, the first case is impossible, because we assumed that ω was Pareto-
optimal. In the second case we would have that u1(ω

′) < β1 which means,
by definition of β1, that ag1 would never propose or accept ω′, so this is
also impossible. Similarly, in the third case we would have that u2(ω

′) < β2
which means that ag2 would never propose or accept ω′, so again this is
impossible. So, the only case in which ω′ could be accepted is the fourth
case.

Furthermore, to rule out the possibility that the agents do not come to
any agreement at all, note that if T is large enough then sooner or later
either of the two agents will have proposed all other offers that are better
for him than ω, so that agent will eventually propose ω and thus the other
agent will eventually accept it.

Next, we will prove that agent ag2 cannot deviate unilaterally to a bet-
ter strategy (we should also prove the same for ag1, but that proof goes
analogously). To prove this, note that if ag2 does deviate to any alternative
strategy σ′

2, then this must yield one of the following outcomes:

1. The negotiations end without agreement.
2. The negotiations end with the same agreement ω.
3. The negotiations end with a different agreement ω′ such that

u2(ω
′) ≤ u2(ω).

4. The negotiations end with a different agreement ω′ such that
u2(ω

′) > u2(ω).

In the first case, the deviation did not improve the outcome for agent ag2,
because she ends up with her reservation value rv2. For her that’s worse out-
come than the original situation in which the agents came to the agreement
ω because we assumed that ω was individually rational, so rv2 < u2(ω).

In the second case the deviation did not improve the outcome for ag2
either, because the outcome is the same as for the original strategy profile.

In the third case, again, the deviation did not improve her outcome,
because agent ag2 ends up with less or equal utility than in the original
situation.

In the fourth case agent ag2 does improve, but we will show that this
case cannot happen. The reason for this, is that we assumed that ω was
Pareto-optimal. This means that if u2(ω

′) > u2(ω), we must necessarily
have u1(ω

′) < u1(ω), otherwise ω′ would dominate ω which contradicts the

152 CHAPTER 5. GAME THEORY

assumption that ω was Pareto-optimal. However, since we assumed that ag1
applies a time-based strategy with target value β1 = u1(ω), we know that
ag1 would never accept or propose any offer with utility lower than u1(ω),
so in particular she would never propose or accept ω′, which means that ω′

could never become an agreement.
We have therefore proved that ag2 cannot make a unilateral deviation

that increases her utility. The fact that this also holds for ag1 can be proved
in exactly the same way.

5.6.9 Non-credible Threats in a Negotiation

Now that we have determined the Nash equilibria of a negotiation, the
question we will investigate is whether or not any of them are based on
non-credible threats. It turns out that indeed, such non-credible threats do
appear when either of the agents blindly follows a Nash equilibrium.

Imagine we are very close the the deadline and agent 1 has proposed some
Pareto-optimal and individually rational offer ω. Furthermore, suppose that
for the rest of the negotiations, agent 1 has chosen the following strategy:
“reject any counter offer from agent 2 that is worse for me than ω, and do
not make any further concessions, no matter what”. Now, it is easy to see
that for agent 2 a best response against this strategy would be to accept
the offer ω. However, let us assume that agent 2 does not play this best
response (that is, player 2 ‘deviates’) and instead makes a counter offer ω′

with slightly less utility for agent 1. Furthermore, suppose that there is
not enough time left for agent 1 to propose any new offer. So, agent 1
can only accept ω′ or accept that the negotiations will fail. Assuming ω′

is also individually rational, it would be sub-optimal for agent 1 to stick to
his strategy (which would cause the negotiations fail) because he would be
better off by accepting ω′. Therefore, he would be forced to also deviate,
which means that his original strategy was indeed based on a non-credible
threat.

5.7 Bargaining Solutions

COMING SOON!

Chapter 6

Evaluation of Negotiation
Algorithms

COMING SOON!

153

154 CHAPTER 6. EVALUATION OF NEGOTIATION ALGORITHMS

Chapter 7

Advanced Negotiations

7.1 Multilateral Negotiation

COMING SOON!

7.2 Negotiation and Search

COMING SOON!

7.3 Non-linear and Computationally Complex
Utility Functions

COMING SOON!

155

156 CHAPTER 7. ADVANCED NEGOTIATIONS

Bibliography

[1] Bo An and Victor R. Lesser. Yushu: A heuristic-based agent for auto-
mated negotiating competition. In Takayuki Ito, Minjie Zhang, Valentin
Robu, Shaheen Fatima, and Tokuro Matsuo, editors, New Trends in
Agent-Based Complex Automated Negotiations, volume 383 of Studies
in Computational Intelligence, pages 145–149. Springer, 2012.

[2] R Axelrod and WD Hamilton. The evolution of cooperation. Science,
211(4489):1390–1396, 1981.

[3] Reyhan Aydogan, Tim Baarslag, Katsuhide Fujita, Johnathan Mell,
Jonathan Gratch, Dave de Jonge, Yasser Mohammad, Shinji Nakadai,
Satoshi Morinaga, Hirotaka Osawa, Claus Aranha, and Catholijn
Jonker. Challenges and main results of the automated negotiating
agents competition (anac) 2019. In Multi-Agent Systems and Agree-
ment Technologies. 17th International Conference EUMAS 2020 and
7th International Conference AT 2020. Thessaloniki, Greece September
14-15, 2020. Revised Selected Papers, Cham, 2020. Springer Interna-
tional Publishing.

[4] Reyhan Aydoğan, David Festen, Koen V Hindriks, and Catholijn M
Jonker. Alternating offers protocols for multilateral negotiation. Mod-
ern approaches to agent-based complex automated negotiation, pages
153–167, 2017.

[5] Tim Baarslag, Mark Hendrikx, Koen V. Hindriks, and Catholijn M.
Jonker. Predicting the performance of opponent models in automated
negotiation. In 2013 IEEE/WIC/ACM International Conferences on
Intelligent Agent Technology, IAT 2013, 17-20 November 2013, Atlanta,
Georgia, USA, pages 59–66. IEEE Computer Society, 2013.

[6] Tim Baarslag, Koen Hindriks, Mark Hendrikx, Alexander Dirkzwa-
ger, and Catholijn Jonker. Decoupling negotiating agents to explore

157

158 BIBLIOGRAPHY

the space of negotiation strategies. In Ivan Marsa-Maestre, Miguel A.
Lopez-Carmona, Takayuki Ito, Minjie Zhang, Quan Bai, and Katsuhide
Fujita, editors, Novel Insights in Agent-based Complex Automated Ne-
gotiation, pages 61–83. Springer Japan, Tokyo, 2014.

[7] Tim Baarslag, Koen V. Hindriks, and Catholijn M. Jonker. Acceptance
conditions in automated negotiation. In Takayuki Ito, Minjie Zhang,
Valentin Robu, and Tokuro Matsuo, editors, Complex Automated Ne-
gotiations: Theories, Models, and Software Competitions, volume 435
of Studies in Computational Intelligence, pages 95–111. Springer, 2013.

[8] Tim Baarslag, Koen V. Hindriks, and Catholijn M. Jonker. A tit for
tat negotiation strategy for real-time bilateral negotiations. In Takayuki
Ito, Minjie Zhang, Valentin Robu, and Tokuro Matsuo, editors, Com-
plex Automated Negotiations: Theories, Models, and Software Com-
petitions, volume 435 of Studies in Computational Intelligence, pages
229–233. Springer, 2013.

[9] Tim Baarslag, Koen V. Hindriks, Catholijn M. Jonker, Sarit Kraus, and
Raz Lin. The first automated negotiating agents competition (ANAC
2010). In New Trends in Agent-Based Complex Automated Negotiations,
volume 383 of Studies in Computational Intelligence, pages 113–135.
Springer, Berlin, Heidelberg, 2012.

[10] Jasper Bakker, Aron Hammond, Daan Bloembergen, and Tim Baarslag.
RLBOA: A modular reinforcement learning framework for autonomous
negotiating agents. In Edith Elkind, Manuela Veloso, Noa Agmon, and
Matthew E. Taylor, editors, Proceedings of the 18th International Con-
ference on Autonomous Agents and MultiAgent Systems, AAMAS ’19,
Montreal, QC, Canada, May 13-17, 2019, pages 260–268. International
Foundation for Autonomous Agents and Multiagent Systems, 2019.

[11] Christopher M. Bishop. Pattern recognition and machine learning, 5th
Edition. Information science and statistics. Springer, 2007.

[12] Siqi Chen and Gerhard Weiss. An efficient and adaptive approach to
negotiation in complex environments. In ECAI 2012 - 20th European
Conference on Artificial Intelligence. Including Prestigious Applications
of Artificial Intelligence (PAIS-2012) System Demonstrations Track,
Montpellier, France, August 27-31 , 2012, volume 242 of Frontiers
in Artificial Intelligence and Applications, pages 228–233, Amsterdam,
The Netherlands, 2012. IOS Press.

BIBLIOGRAPHY 159

[13] Shih-Fen Cheng, Daniel M Reeves, Yevgeniy Vorobeychik, and
Michael P Wellman. Notes on equilibria in symmetric games. In Simon
Parsons and Piotr Gmytrasiewicz, editors, Proceedings of the 6th Inter-
national Workshop On Game Theoretic And Decision Theoretic Agents
GTDT, pages 71–78, 7 2004.

[14] John P Conley and Simon Wilkie. An extension of the nash bargain-
ing solution to nonconvex problems. Games and Economic behavior,
13(1):26–38, 1996.

[15] Dave de Jonge. An analysis of the linear bilateral ANAC domains using
the MiCRO benchmark strategy. In Luc De Raedt, editor, Proceedings
of the Thirty-First International Joint Conference on Artificial Intelli-
gence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, pages 223–229.
ijcai.org, 2022.

[16] Dave de Jonge. Theoretical properties of the MiCRO negotiation strat-
egy. Autonomous Agents and Multi-Agent Systems, 38(46), 2024.

[17] Dave de Jonge, Tim Baarslag, Reyhan Aydoğan, Catholijn Jonker, Kat-
suhide Fujita, and Takayuki Ito. The challenge of negotiation in the
game of diplomacy. In Marin Lujak, editor, Agreement Technologies,
6th International Conference, AT 2018, Bergen, Norway, December 6-
7, 2018, Revised Selected Papers, volume 11327 of Lecture Notes in
Computer Science, pages 100–114, Cham, 2019. Springer International
Publishing.

[18] Dave de Jonge, Filippo Bistaffa, and Jordi Levy. A heuristic algorithm
for multi-agent vehicle routing with automated negotiation. In Frank
Dignum, Alessio Lomuscio, Ulle Endriss, and Ann Nowé, editors, AA-
MAS ’21: 20th International Conference on Autonomous Agents and
Multiagent Systems, Virtual Event, United Kingdom, May 3-7, 2021,
pages 404–412. ACM, 2021.

[19] Dave de Jonge, Filippo Bistaffa, and Jordi Levy. Multi-objective
vehicle routing with automated negotiation. Applied Intelligence,
52(14):16916–16939, Nov 2022.

[20] Dave de Jonge and Carles Sierra. NB3: a multilateral negotiation al-
gorithm for large, non-linear agreement spaces with limited time. Au-
tonomous Agents and Multi-Agent Systems, 29(5):896–942, 2015.

160 BIBLIOGRAPHY

[21] Dave de Jonge and Carles Sierra. D-Brane: a diplomacy playing agent
for automated negotiations research. Applied Intelligence, 47(1):158–
177, 2017.

[22] Ulle Endriss. Monotonic concession protocols for multilateral negoti-
ation. In Hideyuki Nakashima, Michael P. Wellman, Gerhard Weiss,
and Peter Stone, editors, 5th International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2006), Hakodate,
Japan, May 8-12, 2006, pages 392–399. ACM, 2006.

[23] Peyman Faratin, Carles Sierra, and Nicholas R. Jennings. Negotiation
decision functions for autonomous agents. Robotics and Autonomous
Systems, 24(3-4):159 – 182, 1998. Multi-Agent Rationality.

[24] Katsuhide Fujita, Reyhan Aydoğan, Tim Baarslag, Koen Hindriks,
Takayuki Ito, and Catholijn Jonker. The sixth automated negotiating
agents competition (anac 2015). In Modern Approaches to Agent-based
Complex Automated Negotiation, pages 139–151. Springer International
Publishing, Cham, 2017.

[25] Katsuhide Fujita, Reyhan Aydogan, Tim Baarslag, Takayuki Ito, and
Catholijn M. Jonker. The fifth automated negotiating agents com-
petition (ANAC 2014). In Recent Advances in Agent-based Complex
Automated Negotiation [revised and extended papers from the 7th In-
ternational Workshop on Agent-based Complex Automated Negotiation,
ACAN 2014, Paris, France, May 2014], volume 638 of Studies in Com-
putational Intelligence, pages 211–224, Cham, 2014. Springer Interna-
tional Publishing.

[26] Maria Jose Herrero. The nash program: non-convex bargaining prob-
lems. Journal of Economic Theory, 49(2):266–277, 1989.

[27] Koen V. Hindriks and Dmytro Tykhonov. Opponent modelling in auto-
mated multi-issue negotiation using bayesian learning. In Lin Padgham,
David C. Parkes, Jörg P. Müller, and Simon Parsons, editors, 7th In-
ternational Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2008), Estoril, Portugal, May 12-16, 2008, Volume
1, pages 331–338. IFAAMAS, 2008.

[28] Takayuki Ito, Mark Klein, and Hiromitsu Hattori. A multi-issue nego-
tiation protocol among agents with nonlinear utility functions. Multia-
gent Grid Syst., 4:67–83, January 2008.

BIBLIOGRAPHY 161

[29] Ehud Kalai and Meir Smorodinsky. Other solutions to nash’s bargaining
problem. ”Econometrica”, ”43”(3):513–518, 1975.

[30] Shogo Kawaguchi, Katsuhide Fujita, and Takayuki Ito. Compromising
strategy based on estimated maximum utility for automated negotia-
tion agents competition (ANAC-10). In Modern Approaches in Applied
Intelligence - 24th International Conference on Industrial Engineering
and Other Applications of Applied Intelligent Systems, IEA/AIE 2011,
Syracuse, NY, USA, June 28 - July 1, 2011, Proceedings, Part II, vol-
ume 6704 of Lecture Notes in Computer Science, pages 501–510, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

[31] C. E. Lemke and J. T. Howson, Jr. Equilibrium points of bimatrix
games. Journal of the Society for Industrial and Applied Mathematics,
12(2):413–423, 1964.

[32] Raz Lin, Sarit Kraus, Tim Baarslag, Dmytro Tykhonov, Koen Hindriks,
and Catholijn M. Jonker. Genius: An integrated environment for sup-
porting the design of generic automated negotiators. Computational
Intelligence, 30(1):48–70, 2014.

[33] Ivan Marsa-Maestre, Miguel A. Lopez-Carmona, Juan R. Velasco, and
Enrique de la Hoz. Effective bidding and deal identification for nego-
tiations in highly nonlinear scenarios. In Proceedings of The 8th Inter-
national Conference on Autonomous Agents and Multiagent Systems -
Volume 2, AAMAS ’09, pages 1057–1064, Richland, SC, 2009. Interna-
tional Foundation for Autonomous Agents and Multiagent Systems.

[34] Johnathan Mell, Jonathan Gratch, Tim Baarslag, Reyhan Aydogan,
and Catholijn M. Jonker. Results of the first annual human-agent league
of the automated negotiating agents competition. In Proceedings of the
18th International Conference on Intelligent Virtual Agents, IVA 2018,
Sydney, NSW, Australia, November 05-08, 2018, pages 23–28, New
York, NY, USA, 2018. Association for Computing Machinery.

[35] Yasser Mohammad, Enrique Areyan Viqueira, Nahum Alvarez Ay-
erza, Amy Greenwald, Shinji Nakadai, and Satoshi Morinaga. Sup-
ply chain management world - A benchmark environment for situated
negotiations. In Matteo Baldoni, Mehdi Dastani, Beishui Liao, Yuko
Sakurai, and Rym Zalila-Wenkstern, editors, PRIMA 2019: Principles
and Practice of Multi-Agent Systems - 22nd International Conference,

162 BIBLIOGRAPHY

Turin, Italy, October 28-31, 2019, Proceedings, volume 11873 of Lecture
Notes in Computer Science, pages 153–169. Springer, 2019.

[36] Yasser Mohammad, Shinji Nakadai, and Amy Greenwald. Negmas: A
platform for automated negotiations. In Takahiro Uchiya, Quan Bai,
and Ivan Marsá-Maestre, editors, PRIMA 2020: Principles and Prac-
tice of Multi-Agent Systems - 23rd International Conference, Nagoya,
Japan, November 18-20, 2020, Proceedings, volume 12568 of Lecture
Notes in Computer Science, pages 343–351. Springer, 2020.

[37] J.F. Nash. The bargaining problem. ”Econometrica”, ”18”:155–162,
1950.

[38] Thuc Duong Nguyen and Nicholas R. Jennings. Coordinating multi-
ple concurrent negotiations. In 3rd International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2004), 19-23
August 2004, New York, NY, USA, pages 1064–1071. IEEE Computer
Society, 2004.

[39] Martin J Osborne and Ariel Rubinstein. A course in game theory. MIT
press, 1994.

[40] Bram Renting, Dave de Jonge, Holger Hoos, and Catholijn Jonker.
Analysis of learning agents in automated negotiation. Under review.

[41] J. S. Rosenschein and G. Zlotkin. Rules of Encounter. The MIT Press,
Cambridge, USA, 1994.

[42] Ariel Rubinstein. Perfect equilibrium in a bargaining model. Econo-
metrica: Journal of the Econometric Society, pages 97–109, 1982.

[43] Rahul Savani and Theodore L. Turocy. Gambit: The package for com-
putation in game theory, 2025.

[44] Ayan Sengupta, Yasser Mohammad, and Shinji Nakadai. An au-
tonomous negotiating agent framework with reinforcement learning
based strategies and adaptive strategy switching mechanism. In Frank
Dignum, Alessio Lomuscio, Ulle Endriss, and Ann Nowé, editors, AA-
MAS ’21: 20th International Conference on Autonomous Agents and
Multiagent Systems, Virtual Event, United Kingdom, May 3-7, 2021,
pages 1163–1172. ACM, 2021.

BIBLIOGRAPHY 163

[45] Niels van Galen Last. Agent smith: Opponent model estimation in bi-
lateral multi-issue negotiation. In Takayuki Ito, Minjie Zhang, Valentin
Robu, Shaheen Fatima, and Tokuro Matsuo, editors, New Trends in
Agent-Based Complex Automated Negotiations, volume 383 of Studies
in Computational Intelligence, pages 167–174. Springer, 2012.

[46] Christopher KI Williams and Carl Edward Rasmussen. Gaussian pro-
cesses for machine learning, volume 2. MIT press Cambridge, MA,
2006.

[47] Colin R. Williams, Valentin Robu, Enrico H. Gerding, and Nicholas R.
Jennings. Using gaussian processes to optimise concession in complex
negotiations against unknown opponents. In Toby Walsh, editor, IJ-
CAI 2011, Proceedings of the 22nd International Joint Conference on
Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011,
pages 432–438. IJCAI/AAAI, 2011.

[48] Colin R. Williams, Valentin Robu, Enrico H. Gerding, and Nicholas R.
Jennings. Using gaussian processes to optimise concession in complex
negotiations against unknown opponents. In IJCAI 2011, Proceedings
of the 22nd International Joint Conference on Artificial Intelligence,
July 16-22, 2011, pages 432–438, Barcelona, Catalonia, Spain, 2011.
IJCAI.

[49] Colin R. Williams, Valentin Robu, Enrico H. Gerding, and Nicholas R.
Jennings. Iamhaggler: A negotiation agent for complex environments.
In New Trends in Agent-Based Complex Automated Negotiations, vol-
ume 383 of Studies in Computational Intelligence, pages 151–158.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[50] Colin R. Williams, Valentin Robu, Enrico H. Gerding, and Nicholas R.
Jennings. An overview of the results and insights from the third au-
tomated negotiating agents competition (ANAC2012). In Ivan Marsá-
Maestre, Miguel A. López-Carmona, Takayuki Ito, Minjie Zhang, Quan
Bai, and Katsuhide Fujita, editors, Novel Insights in Agent-based Com-
plex Automated Negotiation, volume 535 of Studies in Computational
Intelligence, pages 151–162. Springer, 2014.

	Introduction
	Characteristics of Negotiation
	History of Automated Negotiation

	Basic Negotiations
	Informal Description
	Formal Model
	The Offer Space
	The Alternating Offers Protocol
	Utility Functions
	Reservation Values
	Discount Factors
	Knowledge
	Negotiation Domains

	Pareto Optimality and Individual Rationality
	Competitiveness
	Simulation Framework

	Negotiation Strategies
	The BOA Model
	Bidding Strategies
	Time-Based Strategies
	Adaptive Strategies
	Imitative Strategies

	Acceptance Strategies
	Reproposing

	Opponent Modeling
	Learning the Opponent's Utility Function
	Bayesian Learning
	Scalable Bayesian Learning
	Frequency Analysis

	Learning the Opponent's Strategy
	Gaussian Processes
	Choosing the Optimal Target Value for an Adaptive Negotiation Strategy

	Learning the Opponent's Strategy from Previous Negotiation Sessions

	Game Theory
	Cooperative vs. Non-Cooperative Game Theory
	Normal-Form Games
	Zero-sum Games
	Simultaneous Moves
	Pure Nash Equilibria
	The Prisoner's Dilemma
	Multiple Pure Nash Equilibria
	Mixed Nash Equilibria

	The Equilibrium Selection Problem
	Wrong Solutions to the Equilibrium Selection Problem
	Pareto-Optimality among Nash Equilibria
	Symmetric Games and Symmetric Equilibria

	Turn-taking Games
	Tuples
	Tree Diagrams
	Definition of a Turn-taking Game
	Game Trees
	Strategies
	Non-credible Threats
	Subgame Perfect Equilibria
	Non-deterministic Turn-taking Games

	Turn-taking Games with Imperfect Information
	Automated Negotiation as a Game
	Actions
	The Active Player Map
	The Set of Legal Histories
	The Observation Functions
	The Individual Active-Player functions
	The Utility Functions
	Formal Definition
	Nash Equilibria of a Negotiation
	Non-credible Threats in a Negotiation

	Bargaining Solutions

	Evaluation of Negotiation Algorithms
	Advanced Negotiations
	Multilateral Negotiation
	Negotiation and Search
	Non-linear and Computationally Complex Utility Functions

